4 resultados para Pulp cavity

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chaperonin GroEL is an oligomeric double ring structure that, together with the cochaperonin GroES, assists protein folding. Biochemical analyses indicate that folding occurs in a cis ternary complex in which substrate is sequestered within the GroEL central cavity underneath GroES. Recently, however, studies of GroEL “minichaperones” containing only the apical substrate binding subdomain have questioned the functional importance of substrate encapsulation within GroEL-GroES complexes. Minichaperones were reported to assist folding despite the fact that they are monomeric and therefore cannot form a central cavity. Here we compare directly the folding activity of minichaperones with that of the full GroEL-GroES system. In agreement with earlier studies, minichaperones assist folding of some proteins. However, this effect is observed only under conditions where substantial spontaneous folding is also observed and is indistinguishable from that resulting from addition of the nonchaperone protein α-casein. By contrast, the full GroE system efficiently promotes folding of several substrates under conditions where essentially no spontaneous folding is observed. These data argue that the full GroEL folding activity requires the intact GroEL-GroES complex, and in light of previous studies, underscore the importance of substrate encapsulation for providing a folding environment distinct from the bulk solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ancient septicemic plague epidemics were reported to have killed millions of people for 2 millenniums. However, confident diagnosis of ancient septicemia solely on the basis of historical clinical observations is not possible. The lack of suitable infected material has prevented direct demonstration of ancient septicemia; thus, the history of most infections such as plague remains hypothetical. The durability of dental pulp, together with its natural sterility, makes it a suitable material on which to base such research. We hypothesized that it would be a lasting refuge for Yersinia pestis, the plague agent. DNA extracts were made from the dental pulp of 12 unerupted teeth extracted from skeletons excavated from 16th and 18th century French graves of persons thought to have died of plague (“plague teeth”) and from 7 ancient negative control teeth. PCRs incorporating ancient DNA extracts and primers specific for the human β-globin gene demonstrated the absence of inhibitors in these preparations. The incorporation of primers specific for Y. pestis rpoB (the RNA polymerase β-subunit-encoding gene) and the recognized virulence-associated pla (the plasminogen activator-encoding gene) repeatedly yielded products that had a nucleotide sequence indistinguishable from that of modern day isolates of the bacterium. The specific pla sequence was obtained from 6 of 12 plague skeleton teeth but 0 of 7 negative controls (P < 0.034, Fisher exact test). A nucleic acid-based confirmation of ancient plague was achieved for historically identified victims, and we have confirmed the presence of the disease at the end of 16th century in France. Dental pulp is an attractive target in the quest to determine the etiology of septicemic illnesses detected in ancient corpses. Molecular techniques could be applied to this material to resolve historical outbreaks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tumor necrosis factor (TNF) family cytokines lymphotoxin (LT) α and LTβ form heterotrimers that are expressed on the surface of activated lymphocytes and natural killer cells; LTα homotrimers can be secreted as well. Mice with a disrupted LTα gene lack lymph nodes (LN), Peyer’s patches (PP), and follicular dendritic cell (FDC) networks and reveal profound defects of the splenic architecture. However, it is unclear which of these abnormalities is the result of the absence in LTα homotrimers or LTαβ heterotrimers. To distinguish between these two possibilities, a mouse strain deficient in LTβ was created employing Cre/loxP-mediated gene targeting. Mice deficient in LTβ reveal severe defects in organogenesis of the lymphoid system similar to those of LTα−/− mice, except that mesenteric and cervical LN are present in most LTβ-deficient mice. Both LTβ- and LTα-deficient mice show significant lymphocytosis in the circulation and peritoneal cavity and lymphocytic infiltrations in lungs and liver. After immunization, PNA-positive B cell clusters were detected in the splenic white pulp of LTβ-deficient mice, but FDC networks were severely underdeveloped. Collectively, these results indicate that LTα can signal independently from LTβ in the formation of PNA-positive foci in the spleen, and especially in the development of mesenteric and cervical LN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthetic C peptides, corresponding to the C helix of the HIV type 1 (HIV-1) gp41 envelope protein, are potent inhibitors of HIV-1 membrane fusion. One such peptide is in clinical trials. The crystal structure of the gp41 core, in its proposed fusion-active conformation, is a trimer of helical hairpins in which three C helices pack against a central coiled coil. Each C helix shows especially prominent contacts with one of three symmetry-related, hydrophobic cavities on the surface of the coiled coil. We show that the inhibitory activity of the C peptide C34 depends on its ability to bind to this coiled-coil cavity. Moreover, examining a series of C34 peptide variants with modified cavity-binding residues, we find a linear relationship between the logarithm of the inhibitory potency and the stability of the corresponding helical-hairpin complexes. Our results provide strong evidence that this coiled-coil cavity is a good drug target and clarify the mechanism of C peptide inhibition. They also suggest simple, quantitative assays for the identification and evaluation of analogous inhibitors of HIV-1 entry.