6 resultados para Prunus salicina Lindl.

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A reverse transcriptase-polymerase chain reaction experiment was done to synthesize a homologous polyphenol oxidase (PPO) probe from apricot (Prunus armeniaca var Bergeron) fruit. This probe was further used to isolate a full-length PPO cDNA, PA-PPO (accession no. AF020786), from an immature-green fruit cDNA library. PA-PPO is 2070 bp long and contains a single open reading frame encoding a PPO precursor peptide of 597 amino acids with a calculated molecular mass of 67.1 kD and an isoelectric point of 6.84. The mature protein has a predicted molecular mass of 56.2 kD and an isoelectric point of 5.84. PA-PPO belongs to a multigene family. The gene is highly expressed in young, immature-green fruit and is turned off early in the ripening process. The ratio of PPO protein to total proteins per fruit apparently remains stable regardless of the stage of development, whereas PPO specific activity peaks at the breaker stage. These results suggest that, in addition to a transcriptional control of PPO expression, other regulation factors such as translational and posttranslational controls also occur.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The flavoprotein (R)-(+)-mandelonitrile lyase (MDL; EC 4.1.2.10), which plays a key role in cyanogenesis in rosaceous stone fruits, occurs in black cherry (Prunus serotina Ehrh.) homogenates as several closely related isoforms. Biochemical and molecular biological methods were used to investigate MDL microheterogeneity and function in this species. Three novel MDL cDNAs of high sequence identity (designated MDL2, MDL4, and MDL5) were isolated. Like MDL1 and MDL3 cDNAs (Z. Hu, J.E. Poulton [1997] Plant Physiol 115: 1359–1369), they had open reading frames that predicted a flavin adenine dinucleotide-binding site, multiple N-glycosylation sites, and an N-terminal signal sequence. The N terminus of an MDL isoform purified from seedlings matched the derived amino acid sequence of the MDL4 cDNA. Genomic sequences corresponding to the MDL1, MDL2, and MDL4 cDNAs were obtained by polymerase chain reaction amplification of genomic DNA. Like the previously reported mdl3 gene, these genes are interrupted at identical positions by three short, conserved introns. Given their overall similarity, we conclude that the genes mdl1, mdl2, mdl3, mdl4, and mdl5 are derived from a common ancestral gene and constitute members of a gene family. Genomic Southern-blot analysis showed that this family has approximately eight members. Northern-blot analysis using gene-specific probes revealed differential expression of the genes mdl1, mdl2, mdl3, mdl4, and mdl5.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recombinant cellulose-binding domain (CBD) derived from the cellulolytic bacterium Clostridium cellulovorans was found to modulate the elongation of different plant cells in vitro. In peach (Prunus persica L.) pollen tubes, maximum elongation was observed at 50 μg mL−1 CBD. Pollen tube staining with calcofluor showed a loss of crystallinity in the tip zone of CBD-treated pollen tubes. At low concentrations CBD enhanced elongation of Arabidopsis roots. At high concentrations CBD dramatically inhibited root elongation in a dose-responsive manner. Maximum effect on root hair elongation was at 100 μg mL−1, whereas root elongation was inhibited at that concentration. CBD was found to compete with xyloglucan for binding to cellulose when CBD was added first to the cellulose, before the addition of xyloglucan. When Acetobacter xylinum L. was used as a model system, CBD was found to increase the rate of cellulose synthase in a dose-responsive manner, up to 5-fold compared with the control. Electron microscopy examination of the cellulose ribbons produced by A. xylinum showed that CBD treatment resulted in a splayed ribbon composed of separate fibrillar subunits, compared with a thin, uniform ribbon in the control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grand fir (Abies grandis Lindl.) has been developed as a model system for the study of wound-induced oleoresinosis in conifers as a response to insect attack. Oleoresin is a roughly equal mixture of turpentine (85% monoterpenes [C10] and 15% sesquiterpenes [C15]) and rosin (diterpene [C20] resin acids) that acts to seal wounds and is toxic to both invading insects and their pathogenic fungal symbionts. The dynamic regulation of wound-induced oleoresin formation was studied over 29 d at the enzyme level by in vitro assay of the three classes of synthases directly responsible for the formation of monoterpenes, sesquiterpenes, and diterpenes from the corresponding C10, C15, and C20 prenyl diphosphate precursors, and at the gene level by RNA-blot hybridization using terpene synthase class-directed DNA probes. In overall appearance, the shapes of the time-course curves for all classes of synthase activities are similar, suggesting coordinate formation of all of the terpenoid types. However, closer inspection indicates that the monoterpene synthases arise earlier, as shown by an abbreviated time course over 6 to 48 h. RNA-blot analyses indicated that the genes for all three classes of enzymes are transcriptionally activated in response to wounding, with the monoterpene synthases up-regulated first (transcripts detectable 2 h after wounding), in agreement with the results of cell-free assays of monoterpene synthase activity, followed by the coordinately regulated sesquiterpene synthases and diterpene synthases (transcription beginning on d 3–4). The differential timing in the production of oleoresin components of this defense response is consistent with the immediate formation of monoterpenes to act as insect toxins and their later generation at solvent levels for the mobilization of resin acids responsible for wound sealing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Penetration of 3H-labeled water (3H2O) and the 14C-labeled organic acids benzoic acid ([14C]BA), salicylic acid ([14C]SA), and 2,4-dichlorophenoxyacetic acid ([14C]2,4-D) were measured simultaneously in isolated cuticular membranes of Prunus laurocerasus L., Ginkgo biloba L., and Juglans regia L. For each of the three pairs of compounds (3H2O/[14C]BA, 3H2O/[14C]SA, and 3H2O/[14C]2,4-D) rates of cuticular water penetration were highly correlated with the rates of penetration of the organic acids. Therefore, water and organic acids penetrated the cuticles by the same routes. With the combination 3H2O/[14C]BA, co-permeability was measured with isolated cuticles of nine other plant species. Permeances of 3H2O of all 12 investigated species were highly correlated with the permeances of [14C]BA (r2 = 0.95). Thus, cuticular transpiration can be predicted from BA permeance. The application of this experimental method, together with the established prediction equation, offers the opportunity to answer several important questions about cuticular transport physiology in future investigations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The potato spindle tuber disease was first observed early in the 20th century in the northeastern United States and shown, in 1971, to be incited by a viroid, potato spindle tuber viroid (PSTVd). No wild-plant PSTVd reservoirs have been identified; thus, the initial source of PSTVd infecting potatoes has remained a mystery. Several variants of a novel viroid, designated Mexican papita viroid (MPVd), have now been isolated from Solanum cardiophyllum Lindl. (papita güera, cimantli) plants growing wild in the Mexican state of Aguascalientes. MPVd's nucleotide sequence is most closely related to those of the tomato planta macho viroid (TPMVd) and PSTVd. From TPMVd, MPVd may be distinguished on the basis of biological properties, such as replication and symptom formation in certain differential hosts. Phylogenetic and ecological data indicate that MPVd and certain viroids now affecting crop plants, such as TPMVd, PSTVd, and possibly others, have a common ancestor. We hypothesize that commercial potatoes grown in the United States have become viroid-infected by chance transfer of MPVd or a similar viroid from endemically infected wild solanaceous plants imported from Mexico as germplasm, conceivably from plants known to have been introduced from Mexico to the United States late in the 19th century in efforts to identify genetic resistance to the potato late blight fungus, Phytophthora infestans.