5 resultados para Proteinuria Hematuria
em National Center for Biotechnology Information - NCBI
Resumo:
We have used homologous recombination to disrupt the mouse gene coding for the NaK2Cl cotransporter (NKCC2) expressed in kidney epithelial cells of the thick ascending limb and macula densa. This gene is one of several that when mutated causes Bartter's syndrome in humans, a syndrome characterized by severe polyuria and electrolyte imbalance. Homozygous NKCC2−/− pups were born in expected numbers and appeared normal. However, by day 1 they showed signs of extracellular volume depletion (hematocrit 51%; wild type 37%). They subsequently failed to thrive. By day 7, they were small and markedly dehydrated and exhibited renal insufficiency, high plasma potassium, metabolic acidosis, hydronephrosis of varying severity, and high plasma renin concentrations. None survived to weaning. Treatment of −/− pups with indomethacin from day 1 prevented growth retardation and 10% treated for 3 weeks survived, although as adults they exhibited severe polyuria (10 ml/day), extreme hydronephrosis, low plasma potassium, high blood pH, hypercalciuria, and proteinuria. Wild-type mice treated with furosemide, an inhibitor of NaK2Cl cotransporters, have a phenotype similar to the indomethacin-rescued −/− adults except that hydronephrosis was mild. The polyuria, hypercalciuria, and proteinuria of the −/− adults and furosemide-treated wild-type mice were unresponsive to inhibitors of the renin angiotensin system, vasopressin, and further indomethacin. Thus absence of NKCC2 in the mouse causes polyuria that is not compensated elsewhere in the nephron. The NKCC2 mutant animals should be valuable for uncovering new pathophysiologic and therapeutic aspects of genetic disturbances in water and electrolyte recovery by the kidney.
Resumo:
Blocking CD28-B7 T-cell costimulation by systemic administration of CTLA4Ig, a fusion protein which binds B7 molecules on the surface of antigen-presenting cells, prevents rejection and induces tolerance in experimental acute allograft rejection models. We tested the effect of CTLA4Ig therapy on the process of chronic renal allograft rejection using an established experimental transplantation model. F344 kidneys were transplanted orthotopically into bilaterally nephrectomized LEW recipients. Control animals received low dose cyclosporine for 10 days posttransplantation. Administration of a single injection of CTLA4Ig on day 2 posttransplant alone or in addition to the low dose cyclosporine protocol resulted in improvement of long-term graft survival as compared with controls. More importantly, control recipients which received cyclosporine only developed progressive proteinuria by 8-12 weeks, and morphological evidence of chronic rejection by 16-24 weeks, including widespread transplant arteriosclerosis and focal and segmental glomerulosclerosis, while animals treated with CTLA4Ig alone or in addition to cyclosporine did not. Competitive reverse transcriptase-PCR and immunohistological analysis of allografts at 8, 16, and 24 weeks showed attenuation of lymphocyte and macrophage infiltration and activation in the CTLA4Ig-treated animals, as compared with cyclosporine-alone treated controls. These data confirm that early blockade of the CD28-B7 T-cell costimulatory pathway prevents later development and evolution of chronic renal allograft rejection. Our results indicate that T-cell recognition of alloantigen is a central event in initiating the process of chronic rejection, and that strategies targeted at blocking T-cell costimulation may prove to be a valuable clinical approach to preventing development of the process.
Resumo:
Human aging is impacted severely by cardiovascular disease and significantly but less overtly by renal dysfunction. Advanced glycation endproducts (AGEs) have been linked to tissue damage in diabetes and aging, and the AGE inhibitor aminoguanidine (AG) has been shown to inhibit renal and vascular pathology in diabetic animals. In the present study, the effects of AG on aging-related renal and vascular changes and AGE accumulation were studied in nondiabetic female Sprague-Dawley (S-D) and Fischer 344 (F344) rats treated with AG (0.1% in drinking water) for 18 mo. Significant increases in the AGE content in aged cardiac (P < 0.05), aortic (P < 0.005), and renal (P < 0.05) tissues were prevented by AG treatment (P < 0.05 for each tissue). A marked age-linked vasodilatory impairment in response to acetylcholine and nitroglycerine was prevented by AG treatment (P < 0.005), as was an age-related cardiac hypertrophy evident in both strains (P < 0.05). While creatinine clearance was unaffected by aging in these studies, the AGE/ creatinine clearance ratio declined 3-fold in old rats vs. young rats (S-D, P < 0.05; F344, P < 0.01), while it declined significantly less in AG-treated old rats (P < 0.05). In S-D but not in F344 rats, a significant (P < 0.05) age-linked 24% nephron loss was completely prevented by AG treatment, and glomerular sclerosis was markedly suppressed (P < 0.01). Age-related albuminuria and proteinuria were markedly inhibited by AG in both strains (S-D, P < 0.01; F344, P < 0.01). These data suggest that early interference with AGE accumulation by AG treatment may impart significant protection against the progressive cardiovascular and renal decline afflicting the last decades of life.
Resumo:
The pathogenesis of systemic lupus erythematosus is thought to be primarily under genetic control, with environmental factors playing a secondary role. However, it has been shown recently that intraperitoneal injection of pristane (2,6,10,14-tetramethylpentadecane) induces autoantibodies typical of lupus in BALB/c mice, a strain not usually considered to be genetically susceptible to the disease. In this study, the induction of autoimmune disease by pristane was investigated. BALB/c mice receiving pristane were tested for autoantibody production and histopathological evidence of glomerulonephritis. Six of 11 mice developed IgM anti-single-stranded DNA antibodies shortly after receiving pristane and 4 developed IgM anti-histone antibodies, but anti-double-stranded DNA antibodies were absent. IgG anti-DNA and anti-histone antibodies were absent. In contrast, the lupus-associated anti-nuclear ribonucleoprotein/Sm and anti-Su autoantibodies produced by these mice were predominantly IgG. In addition to autoantibodies, most of the mice developed significant proteinuria. Light microscopy of the kidney showed segmental or diffuse proliferative glomerulonephritis. Electron microscopy showed subepithelial and mesangial immune-complex deposits and epithelial foot process effacement. Immunofluorescence revealed striking glomerular deposition of IgM, IgG, and C3 with a mesangial or mesangiocapillary distribution. Thus, pristane induces immune-complex glomerulonephritis in association with autoantibodies typical of lupus in BALB/c mice. These data support the idea that lupus is produced by an interplay of genetic and environmental factors and that unlike the MRL or (NZB x W)F1 mouse models, in which genetic susceptibility factors are of primary importance, environmental factors are of considerable importance in the autoimmune disease of pristane-treated BALB/c mice.
Resumo:
We have previously shown beneficial effects of dietary protein restriction on transforming growth factor beta (TGF-beta) expression and glomerular matrix accumulation in experimental glomerulonephritis. We hypothesized that these effects result from restriction of dietary L-arginine intake. Arginine is a precursor for three pathways, the products of which are involved in tissue injury and repair: nitric oxide, an effector molecule in inflammatory and immunological tissue injury; polyamines, which are required for DNA synthesis and cell growth; and proline, which is required for collagen production. Rats were fed six isocaloric diets differing in L-arginine and/or total protein content, starting immediately after induction of glomerulonephritis by injection of an antibody reactive to glomerular mesangial cells. Mesangial cell lysis and monocyte/macrophage infiltration did not differ with diet. However, restriction of dietary L-arginine intake, even when total protein intake was normal, resulted in decreased proteinuria, decreased expression of TGF-beta 1 mRNA and TGF-beta 1 protein, and decreased production and deposition of matrix components. L-Arginine, but not D-arginine, supplementation to low protein diets reversed these effects. These results implicate arginine as a key component in the beneficial effects of low protein diet.