112 resultados para Protein Inhibitors of Activated STAT

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

STATs are activated by tyrosine phosphorylation on cytokine stimulation. A tyrosine-phosphorylated STAT forms a functional dimer through reciprocal Src homology 2 domain (SH2)–phosphotyrosyl peptide interactions. IFN treatment induces the association of PIAS1 and Stat1, which results in the inhibition of Stat1-mediated gene activation. The molecular basis of the cytokine-dependent PIAS1–Stat1 interaction has not been understood. We report here that a region near the COOH terminus of PIAS1 (amino acids 392–541) directly interacts with the NH2-terminal domain of Stat1 (amino acids 1–191). A mutant PIAS1 lacking the Stat1-interacting domain failed to inhibit Stat1-mediated gene activation. By using a modified yeast two-hybrid assay, we demonstrated that PIAS1 specifically interacts with the Stat1 dimer, but not tyrosine-phosphorylated or -unphosphorylated Stat1 monomer. In addition, whereas the NH2-terminal region of PIAS1 does not interact with Stat1, it serves as a modulatory domain by preventing the interaction of the COOH-terminal domain of PIAS1 with the Stat1 monomer. Thus, the cytokine-induced PIAS1–Stat1 interaction is mediated through the specific recognition of the dimeric form of Stat1 by PIAS1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An additivity-based sequence to reactivity algorithm for the interaction of members of the Kazal family of protein inhibitors with six selected serine proteinases is described. Ten consensus variable contact positions in the inhibitor were identified, and the 19 possible variants at each of these positions were expressed. The free energies of interaction of these variants and the wild type were measured. For an additive system, this data set allows for the calculation of all possible sequences, subject to some restrictions. The algorithm was extensively tested. It is exceptionally fast so that all possible sequences can be predicted. The strongest, the most specific possible, and the least specific inhibitors were designed, and an evolutionary problem was solved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

STAT (signal transducer and activator of transcription) proteins are latent cytoplasmic transcription factors that become activated by tyrosine phosphorylation in response to cytokine stimulation. Tyrosine phosphorylated STATs dimerize and translocate into the nucleus to activate specific genes. Different members of the STAT protein family have distinct functions in cytokine signaling. Biochemical and genetic analysis has demonstrated that Stat1 is essential for gene activation in response to interferon stimulation. Although progress has been made toward understanding STAT activation, little is known about how STAT signals are down-regulated. We report here the isolation of a family of PIAS (protein inhibitor of activated STAT) proteins. PIAS1, but not other PIAS proteins, blocked the DNA binding activity of Stat1 and inhibited Stat1-mediated gene activation in response to interferon. Coimmunoprecipitation analysis showed that PIAS1 was associated with Stat1 but not Stat2 or Stat3 after ligand stimulation. The in vivo PIAS1–Stat1 interaction requires phosphorylation of Stat1 on Tyr-701. These results identify PIAS1 as a specific inhibitor of Stat1-mediated gene activation and suggest that there may exist a specific PIAS inhibitor in every STAT signaling pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interferon (IFN) treatment induces tyrosine phosphorylation and nuclear translocation of Stat1 (signal transducer and activator of transcription) to activate or repress transcription. We report here that a member of the protein inhibitor of activated STAT family, PIASy, is a transcriptional corepressor of Stat1. IFN treatment triggers the in vivo interaction of Stat1 with PIASy, which represses Stat1-mediated gene activation without blocking the DNA binding activity of Stat1. An LXXLL coregulator signature motif located near the NH2 terminus of PIASy, although not involved in the PIASy–Stat1 interaction, is required for the transrepression activity of PIASy. Our studies identify PIASy as a transcriptional corepressor of Stat1 and suggest that different PIAS proteins may repress STAT-mediated gene activation through distinct mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fungal pathogens perceive and respond to molecules from the plant, triggering pathogenic development. Transduction of these signals may use heterotrimeric G proteins, and it is thought that protein phosphorylation cascades are also important. We have isolated a mitogen-activated protein kinase homolog from the corn pathogen Cochliobolus heterostrophus to test its role as a component of the transduction pathways. The new gene, CHK1, has a deduced amino acid sequence 90% identical to Pmk1 of the rice blast fungus Magnaporthe grisea and 59% identical to Fus3 of Saccharomyces cerevisiae. A series of chk1 deletion mutants has poorly developed aerial hyphae, autolysis, and no conidia. No pseudothecia are formed when a cross between two Δchk1 mutants is attempted. The ability of Δchk1 mutants to infect corn plants is reduced severely. The growth pattern of hyphae on a glass surface is strikingly altered from that of the wild type, forming coils or loops, but no appressoria. This set of phenotypes overlaps only partially with that of pmk1 mutants, the homologous gene of the rice blast fungus. In particular, sexual and asexual sporulation both require Chk1 function in Cochliobolus heterostrophus, in contrast to Pmk1, but perhaps more similar to yeast, where Fus3 transmits the mating signal. Chk1 is required for efficient colonization of leaf tissue, which can be compared with filamentous invasive growth of yeast, modulated through another closely related mitogen-activated protein kinase, Kss1. Ubiquitous signaling elements thus are used in diverse ways in different plant pathogens, perhaps the result of coevolution of the transducers and their targets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transcription factors nuclear factor of activated T cells (NFAT) and activator protein 1 (AP-1) coordinately regulate cytokine gene expression in activated T-cells by binding to closely juxtaposed sites in cytokine promoters. The structural basis for cooperative binding of NFAT and AP-1 to these sites, and indeed for the cooperative binding of transcription factors to composite regulatory elements in general, is not well understood. Mutagenesis studies have identified a segment of AP-1, which lies at the junction of its DNA-binding and dimerization domains (basic region and leucine zipper, respectively), as being essential for proteinprotein interactions with NFAT in the ternary NFAT/AP-1/DNA complex. In a model of the ternary complex, the segment of NFAT nearest AP-1 is the Rel insert region (RIR), a feature that is notable for its hypervariability in size and in sequence amongst members of the Rel transcription factor family. Here we have used mutational analysis to study the role of the NFAT RIR in binding to DNA and AP-1. Parallel yeast one-hybrid screening assays in combination with alanine-scanning mutagenesis led to the identification of four amino acid residues in the RIR of NFAT2 (also known as NFATC1 or NFATc) that are essential for cooperativity with AP-1 (Ile-544, Glu-545, Thr-551, and Ile-553), and three residues that are involved in interactions with DNA (Lys-538, Arg-540, and Asn-541). These results were confirmed and extended through in vitro binding assays. We thus conclude that the NFAT RIR plays an essential dual role in DNA recognition and cooperative binding to AP-1 family transcription factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Signal transducers and activators of transcription (STAT)-induced STAT inhibitor-1 [SSI-1; also known as suppressor of cytokine signaling-1 (SOCS-1)] was identified as a negative feedback regulator of Janus kinase-STAT signaling. We previously generated mice lacking the SSI-1 gene (SSI-1 −/−) and showed that thymocytes and splenocytes in SSI-1 −/− mice underwent accelerated apoptosis. In this paper, we show that murine embryonic fibroblasts lacking the SSI-1 gene are more sensitive than their littermate controls to tumor necrosis factor-α (TNF-α)-induced cell death. In addition, L929 cells forced to express SSI-1 (L929/SSI-1), but not SSI-3 or SOCS-5, are resistant to TNF-α-induced cell death. Furthermore L929/SSI-1 cells treated with TNF-α sustain the activation of p38 mitogen-activated protein (MAP) kinase. In contrast, SSI-1 −/− murine embryonic fibroblasts treated with TNF-α show hardly any activation of p38 MAP kinase. These findings suggest that SSI-1 suppresses TNF-α-induced cell death, which is mediated by p38 MAP kinase signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of 1,25-dihydroxyvitamin D3 [1,25(OH)2)D3], a steroid hormone with immunomodulating properties, on nuclear factor kappa B (NF-kappa B) proteins was examined in in vitro activated normal human lymphocytes by Western blot analysis. Over a 72-hr period of activation, the expression of the 50-kDa NF-kappa B, p50, and its precursor, p105, was increased progressively. When cells were activated in the presence of 1,25(OH)2D3, the levels of the mature protein as well as its precursor were decreased. The effect of the hormone on the levels of p50 was demonstrable in the cytosolic and nuclear compartments; it required between 4 and 8 hr and was specific, as 25-hydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 were ineffective. Besides p50, 1,25(OH)2D3 decreased the levels of another NF-kappa B protein, namely c-rel. In addition, 1,25(OH)2D3 decreased the abundance of a specific DNA-protein complex formed upon incubation of nuclear extracts from activated lymphocytes with a labeled NF-kappa B DNA binding motif. Further, 1,25(OH)2D3 inhibited the transcriptional activity of NF-kappa B in Jurkat cells transiently transfected with a construct containing four tandem repeats of the NF-kappa B binding sequence of the immunoglobulin kappa light chain gene linked to the chloramphenicol acetyltransferase reporter gene. These observations demonstrate directly that there is de novo synthesis of NF-kappa B during human lymphocyte activation and suggest that this process is hormonally regulated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Staphylococcal enterotoxins (SE) stimulate T cells expressing the appropriate variable region beta chain of (V beta) T-cell receptors and have been implicated in the pathogenesis of several autoimmune diseases. Depending on costimulatory signals, SE induce either proliferation or anergy in T cells. In addition, SE can induce an interleukin-2 (IL-2) nonresponsive state and apoptosis. Here, we show that SE induce dynamic changes in the expression of and signal transduction through the IL-2 receptor (IL-2R) beta and gamma chains (IL-2R beta and IL-2R gamma) in human antigen-specific CD4+ T-cell lines. Thus, after 4 hr of exposure to SEA and SEB, the expression of IL-2R beta was down-regulated, IL-2R gamma was slightly up-regulated, while IL-2R alpha remained largely unaffected. The changes in the composition of IL-2Rs were accompanied by inhibition of IL-2-induced tyrosine phosphorylation of the Janus protein-tyrosine kinase 3 (Jak3) and signal transducers and activators of transcription called Stat3 and Stat5. In parallel experiments, IL-2-driven proliferation was inhibited significantly. After 16 hr of exposure to SE, the expression of IL-2R beta remained low, while that of IL2R alpha and IL2R gamma was further up-regulated, and ligand-induced tyrosine phosphorylation of Jak3 and Stat proteins was partly normalized. Yet, IL-2-driven proliferation remained profoundly inhibited, suggesting that signaling events other than Jak3/Stat activation had also been changed following SE stimulation. In conclusion, our data suggest that SE can modulate IL-2R expression and signal transduction involving the Jak/Stat pathway in CD4+ T-cell lines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A class of potent nonpeptidic inhibitors of human immunodeficiency virus protease has been designed by using the three-dimensional structure of the enzyme as a guide. By employing iterative protein cocrystal structure analysis, design, and synthesis the binding affinity of the lead compound was incrementally improved by over four orders of magnitude. An inversion in inhibitor binding mode was observed crystallographically, providing information critical for subsequent design and highlighting the utility of structural feedback in inhibitor optimization. These inhibitors are selective for the viral protease enzyme, possess good antiviral activity, and are orally available in three species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Werner syndrome (WS) is an autosomal recessive disorder characterized by genomic instability and the premature onset of a number of age-related diseases. The gene responsible for WS encodes a member of the RecQ-like subfamily of DNA helicases. Here we show that its murine homologue maps to murine chromosome 8 in a region syntenic with the human WRN gene. We have deleted a segment of this gene and created Wrn-deficient embryonic stem (ES) cells and WS mice. While displaying reduced embryonic survival, live-born WS mice otherwise appear normal during their first year of life. Nonetheless, although several DNA repair systems are apparently intact in homozygous WS ES cells, such cells display a higher mutation rate and are significantly more sensitive to topoisomerase inhibitors (especially camptothecin) than are wild-type ES cells. Furthermore, mouse embryo fibroblasts derived from homozygous WS embryos show premature loss of proliferative capacity. At the molecular level, wild-type, but not mutant, WS protein copurifies through a series of centrifugation and chromatography steps with a multiprotein DNA replication complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We cloned a new inhibitor of apoptosis protein (IAP) homolog, SfIAP, from Spodoptera frugiperda Sf-21 cells, a host of insect baculoviruses. SfIAP contains two baculovirus IAP repeat domains followed by a RING domain. SfIAP has striking amino acid sequence similarity with baculoviral IAPs, CpIAP and OpIAP, suggesting that baculoviral IAPs may be host-derived genes. SfIAP and baculoviral CpIAP inhibit Bax but not Fas-induced apoptosis in human cells. Their apoptosis-suppressing activity in mammalian cells requires both baculovirus IAP repeat and RING domains. Further biochemical data suggest that SfIAP and CpIAP are specific inhibitors of mammalian caspase-9, the pinnacle caspase in the mitochondria/cytochrome c pathway for apoptosis, but are not inhibitors of downstream caspase-3 and caspase-7. Thus the mechanisms by which insect and baculoviral IAPs suppress apoptosis may involve inhibition of an insect caspase-9 homologue. Peptides representing the IAP-binding domain of the Drosophila cell death protein Grim abrogated human caspase suppression by SfIAP and CpIAP, implying evolutionary conservation of the functions of IAPs and their inhibitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bruton’s tyrosine kinase (Btk) is a critical transducer of signals originating from the B cell antigen receptor (BCR). Dosage, sequential phosphorylation, and protein interactions are interdependent mechanisms influencing Btk function. Phosphopeptide-specific mAbs recognizing two distinct phosphotyrosine modifications were used to quantify Btk activation by immunofluorescent techniques during B cell stimulation. In a population of cultured B cells stimulated by BCR crosslinking and analyzed by flow cytometry, transient phosphorylation of the regulatory Btk tyrosine residues (551Y and 223Y) was detected. The kinetics of phosphorylation of the residues were temporally distinct. Tyrosine 551, a transactivating substrate site for Src-family kinases, was maximally phosphorylated within ≈30 seconds of stimulation as monitored by flow cytometry. Tyrosine 223, an autophosphorylation site within the SH3 domain, was maximally phosphorylated at ≈5 minutes. Btk returned to a low tyrosine phosphorylation level within 30 minutes, despite persistent elevation of global tyrosine phosphorylation. Colocalization of activated Btk molecules with the crosslinked BCR signaling complex was observed to coincide with the period of maximal Btk tyrosine phosphorylation when stimulated B cells were analyzed with confocal microscopy. The results of these in situ temporal and spatial analyses imply that Btk signaling occurs in the region of the Ig receptor signaling complex, suggesting a similar location for downstream targets of its activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two important cytokines mediating inflammation are tumor necrosis factor α (TNFα) and IL-1β, both of which require conversion to soluble forms by converting enzymes. The importance of TNFα-converting enzyme and IL-1β-converting enzyme in the production of circulating TNFα and IL-1β in response to systemic challenges has been demonstrated by the use of specific converting enzyme inhibitors. Many inflammatory responses, however, are not systemic but instead are localized. In these situations release and/or activation of cytokines may be different from that seen in response to a systemic stimulus, particularly because associations of various cell populations in these foci allows for the exposure of procytokines to the proteolytic enzymes produced by activated neutrophils, neutrophil elastase (NE), proteinase 3 (PR3), and cathepsin G (Cat G). To investigate the possibility of alternative processing of TNFα and/or IL-1β by neutrophil-derived proteinases, immunoreactive TNFα and IL-1β release from lipopolysaccharide-stimulated THP-1 cells was measured in the presence of activated human neutrophils. Under these conditions, TNFα and IL-1β release was augmented 2- to 5-fold. In the presence of a specific inhibitor of NE and PR3, enhanced release of both cytokines was largely abolished; however, in the presence of a NE and Cat G selective inhibitor, secretory leucocyte proteinase inhibitor, reduction of the enhanced release was minimal. This finding suggested that the augmented release was attributable to PR3 but not NE nor Cat G. Use of purified enzymes confirmed this conclusion. These results indicate that there may be alternative pathways for the production of these two proinflammatory cytokines, particularly in the context of local inflammatory processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cellular processes are mediated by complex networks of molecular interactions. Dissection of their role most commonly is achieved by using genetic mutations that alter, for example, proteinprotein interactions. Small molecules that accomplish the same result would provide a powerful complement to the genetic approach, but it generally is believed that such molecules are rare. There are several natural products, however, that illustrate the feasibility of this approach. Split-pool synthesis now provides a simple mechanical means to prepare vast numbers of complex, even natural product-like, molecules individually attached to cell-sized polymer beads. Here, we describe a genetic system compatible with split-pool synthesis that allows the detection of cell-permeable, small molecule inhibitors of proteinprotein interactions in 100- to 200-nl cell culture droplets, prepared by a recently described technique that arrays large numbers of such droplets. These “nanodroplets” contain defined media, cells, and one or more beads containing ≈100 pmol of a photoreleasable small molecule and a controlled number of cells. The engineered Saccharomyces cerevisiae cells used in this study express two interacting proteins after induction with galactose whose interaction results in cell death in the presence of 5-fluoroorotic acid (inducible reverse two-hybrid assay). Disruption of the interaction by a small molecule allows growth, and the small molecule can be introduced into the system hours before induction of the toxic interaction. We demonstrate that the interaction between the activin receptor R1 and the immunophilin protein FKBP12 can be disrupted by the small molecule FK506 at nanomolar concentrations in nanodroplets. This system should provide a general method for selecting cell-permeable ligands that can be used to study the relevance of proteinprotein interactions in living cells or organisms.