56 resultados para Protein Biosynthesis

em National Center for Biotechnology Information - NCBI


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A central aspect of pathogenesis in the transmissible spongiform encephalopathies or prion diseases is the conversion of normal protease-sensitive prion protein (PrP-sen) to the abnormal protease-resistant form, PrP-res. Here we identify porphyrins and phthalocyanines as inhibitors of PrP-res accumulation. The most potent of these tetrapyrroles had IC50 values of 0.5–1 μM in scrapie-infected mouse neuroblastoma (ScNB) cell cultures. Inhibition was observed without effects on protein biosynthesis in general or PrP-sen biosynthesis in particular. Tetrapyrroles also inhibited PrP-res formation in a cell-free reaction composed predominantly of hamster PrP-res and PrP-sen. Inhibitors were found among phthalocyanines, deuteroporphyrins IX, and meso-substituted porphines; examples included compounds containing anionic, neutral protic, and cationic peripheral substituents and various metals. We conclude that certain tetrapyrroles specifically inhibit the conversion of PrP-sen to PrP-res without apparent cytotoxic effects. The inhibition observed in the cell-free conversion reaction suggests that the mechanism involved direct interactions of the tetrapyrrole with PrP-res and/or PrP-sen. These findings introduce a new class of inhibitors of PrP-res formation that represents a potential source of therapeutic agents for transmissible spongiform encephalopathies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lysyl-tRNAs are essential for protein biosynthesis by ribosomal mRNA translation in all organisms. They are synthesized by lysyl-tRNA synthetases (EC 6.1.1.6), a group of enzymes composed of two unrelated families. In bacteria and eukarya, all known lysyl-tRNA synthetases are subclass IIc-type aminoacyl-tRNA synthetases, whereas some archaea have been shown to contain an unrelated class I-type lysyl-tRNA synthetase. Examination of the preliminary genomic sequence of the bacterial pathogen Borrelia burgdorferi, the causative agent of Lyme disease, indicated the presence of an open reading frame with over 55% similarity at the amino acid level to archaeal class I-type lysyl-tRNA synthetases. In contrast, no coding region with significant similarity to any class II-type lysyl-tRNA synthetase could be detected. Heterologous expression of this open reading frame in Escherichia coli led to the production of a protein with canonical lysyl-tRNA synthetase activity in vitro. Analysis of B. burgdorferi mRNA showed that the lysyl-tRNA synthetase-encoding gene is highly expressed, confirming that B. burgdorferi contains a functional class I-type lysyl-tRNA synthetase. The detection of an archaeal-type lysyl-tRNA synthetase in B. burgdorferi and other pathogenic spirochetes, but not to date elsewhere in bacteria or eukarya, indicates that the gene that encodes this enzyme has a common origin with its orthologue from the archaeal kingdom. This difference between the lysyl-tRNA synthetases of spirochetes and their hosts may be readily exploitable for the development of anti-spirochete therapeutics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Since ribosomally mediated protein biosynthesis is confined to the L-amino acid pool, the presence of D-amino acids in peptides was considered for many years to be restricted to proteins of prokaryotic origin. Unicellular microorganisms have been responsible for the generation of a host of D-amino acid-containing peptide antibiotics (gramicidin, actinomycin, bacitracin, polymyxins). Recently, a series of mu and delta opioid receptor agonists [dermorphins and deltorphins] and neuroactive tetrapeptides containing a D-amino acid residue have been isolated from amphibian (frog) skin and mollusks. Amino acid sequences obtained from the cDNA libraries coincide with the observed dermorphin and deltorphin sequences, suggesting a stereospecific posttranslational amino acid isomerization of unknown mechanism. A cofactor-independent serine isomerase found in the venom of the Agelenopsis aperta spider provides the first major clue to explain how multicellular organisms are capable of incorporating single D-amino acid residues into these and other eukaryotic peptides. The enzyme is capable of isomerizing serine, cysteine, O-methylserine, and alanine residues in the middle of peptide chains, thereby providing a biochemical capability that, until now, had not been observed. Both D- and L-amino acid residues are susceptible to isomerization. The substrates share a common Leu-Xaa-Phe-Ala recognition site. Early in the reaction sequence, solvent-derived deuterium resides solely with the epimerized product (not substrate) in isomerizations carried out in 2H2O. Significant deuterium isotope effects are obtained in these reactions in addition to isomerizations of isotopically labeled substrates (2H at the epimerizeable serine alpha-carbon atom). The combined kinetic and structural data suggests a two-base mechanism in which abstraction of a proton from one face is concomitant with delivery from the opposite face by the conjugate acid of the second enzymic base.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The hy1 mutants of Arabidopsis thaliana fail to make the phytochrome-chromophore phytochromobilin and therefore are deficient in a wide range of phytochrome-mediated responses. Because this defect can be rescued by feeding seedlings biliverdin IXα, it is likely that the mutations affect an enzyme that converts heme to this phytochromobilin intermediate. By a combination of positional cloning and candidate-gene isolation, we have identified the HY1 gene and found it to be related to cyanobacterial, algal, and animal heme oxygenases. Three independent alleles of hy1 contain DNA lesions within the HY1 coding region, and a genomic sequence spanning the HY1 locus complements the hy1–1 mutation. HY1 is a member of a gene family and is expressed in a variety of A. thaliana tissues. Based on its homology, we propose that HY1 encodes a higher-plant heme oxygenase, designated AtHO1, responsible for catalyzing the reaction that opens the tetrapyrrole ring of heme to generate biliverdin IXα.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Squalene epoxidase, a membrane-associated enzyme that converts squalene to squalene 2,3-oxide, plays an important role in the maintenance of cholesterol homeostasis. In 1957, Bloch and colleagues identified a factor from rat liver cytosol termed “supernatant protein factor (SPF),” which promotes the squalene epoxidation catalyzed by rat liver microsomes with oxygen, NADPH, FAD, and phospholipid [Tchen, T. T. & Bloch, K. (1957) J. Biol. Chem. 226, 921–930]. Although purification of SPF by 11,000-fold was reported, no information is so far available on the primary structure or biological function of SPF. Here we report the cDNA cloning and expression of SPF from rat and human. The encoded protein of 403 amino acids belongs to a family of cytosolic lipid-binding/transfer proteins such as α-tocopherol transfer protein, cellular retinal binding protein, yeast phosphatidylinositol transfer protein (Sec14p), and squid retinal binding protein. Recombinant SPF produced in Escherichia coli enhances microsomal squalene epoxidase activity and promotes intermembrane transfer of squalene in vitro. SPF mRNA is expressed abundantly in the liver and small intestine, both of which are important sites of cholesterol biosynthesis. SPF is expressed significantly in isolated hepatocytes, but the expression level was markedly decreased after 48 h of in vitro culture. Moreover, SPF was not detectable in most of the cell lines tested, including HepG2 and McARH7777 hepatomas. Transfection of SPF cDNA in McARH7777 significantly stimulated de novo cholesterol biosynthesis. These data suggest that SPF is a cytosolic squalene transfer protein capable of regulating cholesterol biosynthesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A reversibly glycosylated polypeptide from pea (Pisum sativum) is thought to have a role in the biosynthesis of hemicellulosic polysaccharides. We have investigated this hypothesis by isolating a cDNA clone encoding a homolog of Arabidopsis thaliana, Reversibly Glycosylated Polypeptide-1 (AtRGP1), and preparing antibodies against the protein encoded by this gene. Polyclonal antibodies detect homologs in both dicot and monocot species. The patterns of expression and intracellular localization of the protein were examined. AtRGP1 protein and RNA concentration are highest in roots and suspension-cultured cells. Localization of the protein shows it to be mostly soluble but also peripherally associated with membranes. We confirmed that AtRGP1 produced in Escherichia coli could be reversibly glycosylated using UDP-glucose and UDP-galactose as substrates. Possible sites for UDP-sugar binding and glycosylation are discussed. Our results are consistent with a role for this reversibly glycosylated polypeptide in cell wall biosynthesis, although its precise role is still unknown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vitamin C (l-ascorbic acid; AsA) acts as a potent antioxidant and cellular reductant in plants and animals. AsA has long been known to have many critical physiological roles in plants, yet its biosynthesis is only currently being defined. A pathway for AsA biosynthesis that features GDP-mannose and l-galactose has recently been proposed for plants. We have isolated a collection of AsA-deficient mutants of Arabidopsis thaliana that are valuable tools for testing of an AsA biosynthetic pathway. The best-characterized of these mutants (vtc1) contains ≈25% of wild-type AsA and is defective in AsA biosynthesis. By using a combination of biochemical, molecular, and genetic techniques, we have demonstrated that the VTC1 locus encodes a GDP-mannose pyrophosphorylase (mannose-1-P guanyltransferase). This enzyme provides GDP-mannose, which is used for cell wall carbohydrate biosynthesis and protein glycosylation as well as for AsA biosynthesis. In addition to genetically defining the first locus involved in AsA biosynthesis, this work highlights the power of using traditional mutagenesis techniques coupled with the Arabidopsis Genome Initiative to rapidly clone physiologically important genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plants, unlike other higher eukaryotes, possess all the necessary enzymatic equipment for de novo synthesis of methionine, an amino acid that supports additional roles than simply serving as a building block for protein synthesis. This is because methionine is the immediate precursor of S-adenosylmethionine (AdoMet), which plays numerous roles of being the major methyl-group donor in transmethylation reactions and an intermediate in the biosynthesis of polyamines and of the phytohormone ethylene. In addition, AdoMet has regulatory function in plants behaving as an allosteric activator of threonine synthase. Among the AdoMet-dependent reactions occurring in plants, methylation of cytosine residues in DNA has raised recent interest because impediment of this function alters plant morphology and induces homeotic alterations in flower organs. Also, AdoMet metabolism seems somehow implicated in plant growth via an as yet fully understood link with plant-growth hormones such as cytokinins and auxin and in plant pathogen interactions. Because of this central role in cellular metabolism, a precise knowledge of the biosynthetic pathways that are responsible for homeostatic regulation of methionine and AdoMet in plants has practical implications, particularly in herbicide design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MLN64 is a protein that is highly expressed in certain breast carcinomas. The C terminus of MLN64 shares significant homology with the steroidogenic acute regulatory protein (StAR), which plays a key role in steroid hormone biosynthesis by enhancing the intramitochondrial translocation of cholesterol to the cholesterol side-chain cleavage enzyme. We tested the ability of MLN64 to stimulate steroidogenesis by using COS-1 cells cotransfected with plasmids expressing the human cholesterol side-chain cleavage enzyme system and wild-type and mutant MLN64 proteins. Wild-type MLN64 increased pregnenolone secretion in this system 2-fold. The steroidogenic activity of MLN64 was found to reside in the C terminus of the protein, because constructs from which the C-terminal StAR homology domain was deleted had no steroidogenic activity. In contrast, removal of N-terminal sequences increased MLN64’s steroidogenesis-enhancing activity. MLN64 mRNA was found in many human tissues, including the placenta and brain, which synthesize steroid hormones but do not express StAR. Western blot analysis revealed the presence of lower molecular weight immunoreactive MLN64 species that contain the C-terminal sequences in human tissues. Homologs of both MLN64 and StAR were identified in Caenorhabditis elegans, indicating that the two proteins are ancient. Mutations that inactivate StAR were correlated with amino acid residues that are identical or similar among StAR and MLN64, indicating that conserved motifs are important for steroidogenic activity. We conclude that MLN64 stimulates steroidogenesis by virtue of its homology to StAR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NADPH:protochlorophyllide (Pchlide) oxidoreductase (POR) is the key enzyme of chlorophyll biosynthesis in angiosperms. In barley, two POR enzymes, termed PORA and PORB, exist. Both are nucleus-encoded plastid proteins that must be imported posttranslationally from the cytosol. Whereas the import of the precursor of PORA, pPORA, previously has been shown to depend on Pchlide, the import of pPORB occurred constitutively. To study this striking difference, chimeric precursor proteins were constructed in which the transit sequences of the pPORA and pPORB were exchanged and fused to either their cognate polypeptides or to a cytosolic dihydrofolate reductase (DHFR) reporter protein of mouse. As shown here, the transit peptide of the pPORA (transA) conferred the Pchlide requirement of import onto both the mature PORB and the DHFR. By contrast, the transit peptide of the pPORB directed the reporter protein into both chloroplasts that contained or lacked translocation-active Pchlide. In vitro binding studies further demonstrated that the transit peptide of the pPORA, but not of the pPORB, is able to bind Pchlide. We conclude that the import of the authentic pPORA and that of the transA-PORB and transA-DHFR fusion proteins is regulated by a direct transit peptide-Pchlide interaction, which is likely to occur in the plastid envelope, a major site of porphyrin biosynthesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Iron regulatory proteins (IRPs) are cytoplasmic RNA binding proteins that are central components of a sensory and regulatory network that modulates vertebrate iron homeostasis. IRPs regulate iron metabolism by binding to iron responsive element(s) (IREs) in the 5′ or 3′ untranslated region of ferritin or transferrin receptor (TfR) mRNAs. Two IRPs, IRP1 and IRP2, have been identified previously. IRP1 exhibits two mutually exclusive functions as an RNA binding protein or as the cytosolic isoform of aconitase. We demonstrate that the Ba/F3 family of murine pro-B lymphocytes represents the first example of a mammalian cell line that fails to express IRP1 protein or mRNA. First, all of the IRE binding activity in Ba/F3-gp55 cells is attributable to IRP2. Second, synthesis of IRP2, but not of IRP1, is detectable in Ba/F3-gp55 cells. Third, the Ba/F3 family of cells express IRP2 mRNA at a level similar to other murine cell lines, but IRP1 mRNA is not detectable. In the Ba/F3 family of cells, alterations in iron status modulated ferritin biosynthesis and TfR mRNA level over as much as a 20- and 14-fold range, respectively. We conclude that IRP1 is not essential for regulation of ferritin or TfR expression by iron and that IRP2 can act as the sole IRE-dependent mediator of cellular iron homeostasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Asparaginyl-tRNA (Asn-tRNA) and glutaminyl-tRNA (Gln-tRNA) are essential components of protein synthesis. They can be formed by direct acylation by asparaginyl-tRNA synthetase (AsnRS) or glutaminyl-tRNA synthetase (GlnRS). The alternative route involves transamidation of incorrectly charged tRNA. Examination of the preliminary genomic sequence of the radiation-resistant bacterium Deinococcus radiodurans suggests the presence of both direct and indirect routes of Asn-tRNA and Gln-tRNA formation. Biochemical experiments demonstrate the presence of AsnRS and GlnRS, as well as glutamyl-tRNA synthetase (GluRS), a discriminating and a nondiscriminating aspartyl-tRNA synthetase (AspRS). Moreover, both Gln-tRNA and Asn-tRNA transamidation activities are present. Surprisingly, they are catalyzed by a single enzyme encoded by three ORFs orthologous to Bacillus subtilis gatCAB. However, the transamidation route to Gln-tRNA formation is idled by the inability of the discriminating D. radiodurans GluRS to produce the required mischarged Glu-tRNAGln substrate. The presence of apparently redundant complete routes to Asn-tRNA formation, combined with the absence from the D. radiodurans genome of genes encoding tRNA-independent asparagine synthetase and the lack of this enzyme in D. radiodurans extracts, suggests that the gatCAB genes may be responsible for biosynthesis of asparagine in this asparagine prototroph.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abscisic acid (ABA), an apocarotenoid synthesized from cleavage of carotenoids, regulates seed maturation and stress responses in plants. The viviparous seed mutants of maize identify genes involved in synthesis and perception of ABA. Two alleles of a new mutant, viviparous14 (vp14), were identified by transposon mutagenesis. Mutant embryos had normal sensitivity to ABA, and detached leaves of mutant seedlings showed markedly higher rates of water loss than those of wild type. The ABA content of developing mutant embryos was 70% lower than that of wild type, indicating a defect in ABA biosynthesis. vp14 embryos were not deficient in epoxy-carotenoids, and extracts of vp14 embryos efficiently converted the carotenoid cleavage product, xanthoxin, to ABA, suggesting a lesion in the cleavage reaction. vp14 was cloned by transposon tagging. The VP14 protein sequence is similar to bacterial lignostilbene dioxygenases (LSD). LSD catalyzes a double-bond cleavage reaction that is closely analogous to the carotenoid cleavage reaction of ABA biosynthesis. Southern blots indicated a family of four to six related genes in maize. The Vp14 mRNA is expressed in embryos and roots and is strongly induced in leaves by water stress. A family of Vp14-related genes evidently controls the first committed step of ABA biosynthesis. These genes are likely to play a key role in the developmental and environmental control of ABA synthesis in plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bacterial iron response regulator (Irr) protein mediates iron-dependent regulation of heme biosynthesis. Pulse–chase and immunoprecipitation experiments showed that Irr degraded in response to 6 μM iron with a half-life of ≈30 min and that this regulated stability was the principal determinant of control by iron. Irr contains a heme regulatory motif (HRM) near its amino terminus. A role for heme in regulation was implicated by the retention of Irr in heme synthesis mutants in the presence of iron. Addition of heme to low iron (0.3 μM) cultures was sufficient for the disappearance of Irr in cells of the wild-type and heme mutant strains. Spectral and binding analyses of purified recombinant Irr showed that the protein bound heme with high affinity and caused a blue shift in the absorption spectrum of heme to a shorter wavelength. A Cys29 → Ala substitution within the HRM of Irr (IrrC29A) abrogated both high affinity binding to heme and the spectral blue shift. In vivo turnover experiments showed that, unlike wild-type Irr, IrrC29A was stable in the presence of iron. We conclude that iron-dependent degradation of Irr involves direct binding of heme to the protein at the HRM. The findings implicate a regulatory role for heme in protein degradation and provide direct evidence for a functional HRM in a prokaryote.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability of Nicotiana tabacum cell cultures to utilize farnesol (F-OH) for sterol and sesquiterpene biosynthesis was investigated. [3H]F-OH was readily incorporated into sterols by rapidly growing cell cultures. However, the incorporation rate into sterols was reduced by greater than 70% in elicitor-treated cell cultures whereas a substantial proportion of the radioactivity was redirected into capsidiol, an extracellular sesquiterpene phytoalexin. The incorporation of [3H]F-OH into sterols was inhibited by squalestatin 1, suggesting that [3H]F-OH was incorporated via farnesyl pyrophosphate (F-P-P). Consistent with this possibility, N. tabacum proteins were metabolically labeled with [3H]F-OH or [3H]geranylgeraniol ([3H]GG-OH). Kinase activities converting F-OH to farnesyl monophosphate (F-P) and, subsequently, F-P-P were demonstrated directly by in vitro enzymatic studies. [3H]F-P and [3H]F-P-P were synthesized when exogenous [3H]F-OH was incubated with microsomal fractions and CTP. The kinetics of formation suggested a precursor–product relationship between [3H]F-P and [3H]F-P-P. In agreement with this kinetic pattern of labeling, [32P]F-P and [32P]F-P-P were synthesized when microsomal fractions were incubated with F-OH and F-P, respectively, with [γ-32P]CTP serving as the phosphoryl donor. Under similar conditions, the microsomal fractions catalyzed the enzymatic conversion of [3H]GG-OH to [3H]geranylgeranyl monophosphate and [3H]geranylgeranyl pyrophosphate ([3H]GG-P-P) in CTP-dependent reactions. A novel biosynthetic mechanism involving two successive monophosphorylation reactions was supported by the observation that [3H]CTP was formed when microsomes were incubated with [3H]CDP and either F-P-P or GG-P-P, but not F-P. These results document the presence of at least two CTP-mediated kinases that provide a mechanism for the utilization of F-OH and GG-OH for the biosynthesis of isoprenoid lipids and protein isoprenylation.