8 resultados para Propensity score
em National Center for Biotechnology Information - NCBI
Resumo:
This paper decomposes the conventional measure of selection bias in observational studies into three components. The first two components are due to differences in the distributions of characteristics between participant and nonparticipant (comparison) group members: the first arises from differences in the supports, and the second from differences in densities over the region of common support. The third component arises from selection bias precisely defined. Using data from a recent social experiment, we find that the component due to selection bias, precisely defined, is smaller than the first two components. However, selection bias still represents a substantial fraction of the experimental impact estimate. The empirical performance of matching methods of program evaluation is also examined. We find that matching based on the propensity score eliminates some but not all of the measured selection bias, with the remaining bias still a substantial fraction of the estimated impact. We find that the support of the distribution of propensity scores for the comparison group is typically only a small portion of the support for the participant group. For values outside the common support, it is impossible to reliably estimate the effect of program participation using matching methods. If the impact of participation depends on the propensity score, as we find in our data, the failure of the common support condition severely limits matching compared with random assignment as an evaluation estimator.
Resumo:
To begin to understand mechanistic differences in endocytosis in neurons and nonneuronal cells, we have compared the biochemical properties of the ubiquitously expressed dynamin-II isoform with those of neuron-specific dynamin-I. Like dynamin-I, dynamin-II is specifically localized to and highly concentrated in coated pits on the plasma membrane and can assemble in vitro into rings and helical arrays. As expected, the two closely related isoforms share a similar mechanism for GTP hydrolysis: both are stimulated in vitro by self-assembly and by interaction with microtubules or the SH3 domain-containing protein, grb2. Deletion of the C-terminal proline/arginine-rich domain from either isoform abrogates self-assembly and assembly-dependent increases in GTP hydrolysis. However, dynamin-II exhibits a ∼threefold higher rate of intrinsic GTP hydrolysis and higher affinity for GTP than dynamin-I. Strikingly, the stimulated GTPase activity of dynamin-II can be >40-fold higher than dynamin-I, due principally to its greater propensity for self-assembly and the increased resistance of assembled dynamin-II to GTP-triggered disassembly. These results are consistent with the hypothesis that self-assembly is a major regulator of dynamin GTPase activity and that the intrinsic rate of GTP hydrolysis reflects a dynamic, GTP-dependent equilibrium of assembly and disassembly.
Resumo:
The distribution of optimal local alignment scores of random sequences plays a vital role in evaluating the statistical significance of sequence alignments. These scores can be well described by an extreme-value distribution. The distribution’s parameters depend upon the scoring system employed and the random letter frequencies; in general they cannot be derived analytically, but must be estimated by curve fitting. For obtaining accurate parameter estimates, a form of the recently described ‘island’ method has several advantages. We describe this method in detail, and use it to investigate the functional dependence of these parameters on finite-length edge effects.
Resumo:
Proline is established as a potent breaker of both alpha-helical and beta-sheet structures in soluble (globular) proteins. Thus, the frequent occurrence of the Pro residue in the putative transmembrane helices of integral membrane proteins, particularly transport proteins, presents a structural dilemma. We propose that this phenomenon results from the fact that the structural propensity of a given amino acid may be altered to conform to changes imposed by molecular environment. To test this hypothesis on proline, we synthesized model peptides of generic sequence H2N-(Ser-LyS)2-Ala- Leu-Z-Ala-Leu-Z-Trp-Ala-Leu-Z-(Lys-Ser)3-OH (Z = Ala and/or Pro). Peptide conformations were analyzed by circular dichroism spectroscopy in aqueous buffer, SDS, lysophosphatidylglycerol micelles, and organic solvents (methanol, trifluoroethanol, and 2-propanol). The helical propensity of Pro was found to be greatly enhanced in the membrane-mimetic environments of both lipid micelles and organic solvents. Proline was found to stabilize the alpha-helical conformation relative to Ala at elevated temperatures in 2-propanol, an observation that argues against the doctrine that Pro is the most potent alpha-helix breaker as established in aqueous media. Parallel studies in deoxycholate micelles of the temperature-induced conformational transitions of the single-spanning membrane bacteriophage IKe major coat protein, in which the Pro-containing wild type was compared with Pro30 --> Ala mutant, Pro was found to protect the helix, but disrupt the beta-sheet structure as effectively as it does to model peptides in water. The intrinsic capacity of Pro to disrupt beta-sheets was further reflected in a survey of porins where Pro was found to be selectively excluded from the core of membrane-spanning beta-sheet barrels. The overall data provide a rationale for predicting and understanding the structural consequences when Pro occurs in the context of a membrane.
Resumo:
Synapsin I has been proposed to be involved in the modulation of neurotransmitter release by controlling the availability of synaptic vesicles for exocytosis. To further understand the role of synapsin I in the function of adult nerve terminals, we studied synapsin I-deficient mice generated by homologous recombination. The organization of synaptic vesicles at presynaptic terminals of synapsin I-deficient mice was markedly altered: densely packed vesicles were only present in a narrow rim at active zones, whereas the majority of vesicles were dispersed throughout the terminal area. This was in contrast to the organized vesicle clusters present in terminals of wild-type animals. Release of glutamate from nerve endings, induced by K+,4-aminopyridine, or a Ca2+ ionophore, was markedly decreased in synapsin I mutant mice. The recovery of synaptic transmission after depletion of neurotransmitter by high-frequency stimulation was greatly delayed. Finally, synapsin I-deficient mice exhibited a strikingly increased response to electrical stimulation, as measured by electrographic and behavioral seizures. These results provide strong support for the hypothesis that synapsin I plays a key role in the regulation of nerve terminal function in mature synapses.