2 resultados para Progestin

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously characterized a regulatory element located between -294 and -200 within the mouse mammary tumor virus (MMTV) long terminal repeat (LTR). This element termed AA element cooperates with the glucocorticoid response elements (GREs) for glucocorticoid activation. Here we show that in a MMTV LTR wild type context, the deletion of this element significantly reduces both glucocorticoid and progestin activation of the promoter. Deletion of the two most distal GREs forces the glucocorticoid receptor (GR) and the progestin receptor (PR) to bind the same response elements and results in a dramatic decrease in the inducibility of the MMTV promoter by the two hormones. The simultaneous deletion of the two distal GREs and of the AA element abolishes completely the glucocorticoid-induced activation of the promoter. In contrast it restores a significant level of progestin-induced activation. This different effect of the double deletion on glucocorticoid- and progestin-induced MMTV promoter activation is not cell specific because it is also observed, and is even stronger, when either GR or PR is expressed in the same cell line (NIH 3T3). This is the first description of a mutated MMTV promoter that, although retaining GREs, is activated by progestins and not by glucocorticoids. This suggests a different functional cooperation between protein(s) interacting with the AA element and GR or PR. Cotransfections with constructs containing wild-type or mutated MMTV LTR with either PR lacking its C-terminal domain or GR/PR chimeras in which the N-terminal domains have been exchanged demonstrate that the N-terminal domains of the receptors specify the different behavior of GR and PR regarding the AA element.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Progesterone receptors appear in granuloma cells of preovulatory follicles after the midcycle gonadotropin surge, suggesting important local actions of progesterone during ovulation in primates. Steroid reduction and replacement during the gonadotropin surge in macaques was used to evaluate the role of progesterone in the ovulatory process. Animals received gonadotropins to induce development of multiple preovulatory follicles, followed by human chorionic gonadotropin (hCG) administration (day 0) to promote oocyte (nuclear) maturation, ovulation, and follicular luteinization. On days 0-2, animals received no further treatment; a steroid synthesis inhibitor, trilostane (TRL); TRL + R5020; or TRL + dihydrotestosterone propionate (DHT). On day 3, ovulation was confirmed by counting ovulation sites and collecting oviductal oocytes. The meiotic status of oviductal and remaining follicular oocytes was evaluated. Peak serum estradiol levels, the total number of large follicles, and baseline serum progesterone levels at the time of hCG administration were similar in all animals. Ovulation sites and oviductal oocytes were routinely observed in controls. Ovulation was abolished in TRL. Progestin, but not androgen, replacement restored ovulation. Relative to controls, progesterone production was impaired for the first 6 days post-hCG in TRL, TRL + R5020, and TRL + DHT. Thereafter, progesterone remained low in TRL but recovered to control levels with progestin and androgen replacement. Similar percentages of mature (metaphase II) oocytes were collected among groups. Thus, steroid reduction during the gonadotropin surge inhibited ovulation and luteinization, but not reinitiation of oocyte meiotic maturation, in the primate follicle. The data are consistent with a local receptor-mediated role for progesterone in the ovulatory process.