2 resultados para Profession, Choice of.
em National Center for Biotechnology Information - NCBI
Resumo:
The genes of the homeotic complex (HOX) encode DNA binding homeodomain proteins that control developmental fates by differentially regulating the transcription of downstream target genes. Despite their unique in vivo functions, disparate HOX proteins often bind to very similar DNA sequences in vitro. Thus, a critical question is how HOX proteins select the correct sets of target genes in vivo. The homeodomain proteins encoded by the Drosophila extradenticle gene and its mammalian homologues, the pbx genes, contribute to HOX specificity by cooperatively binding to DNA with HOX proteins. For example, the HOX protein labial cooperatively binds with extradenticle protein to a 20-bp oligonucleotide that is sufficient to direct a labial-like expression pattern in Drosophila embryos. Here we have analyzed the protein-DNA interactions that are important for forming the labial-extradenticle-DNA complex. The data suggest a model in which labial and extradenticle, separated by only 4 bp, bind this DNA as a heterodimer in a head-to-tail orientation. We have confirmed several aspects of this model by characterizing extradenticle-HOX binding to mutant oligonucleotides. Most importantly, mutations in base pairs predicted to contact the HOX N-terminal arm resulted in a change in HOX preference in the heterodimer, from labial to Ultrabithorax. These results demonstrate that extradenticle prefers to bind cooperatively with different HOX proteins depending on subtle differences in the heterodimer binding site.
Resumo:
The influenza virus M1 mRNA has two alternative 5' splice sites: a distal 5' splice site producing mRNA3 that has the coding potential for 9 amino acids and a proximal 5' splice site producing M2 mRNA encoding the essential M2 ion-channel protein. Only mRNA3 was made in uninfected cells transfected with DNA expressing M1 mRNA. Similarly, using nuclear extracts from uninfected cells, in vitro splicing of M1 mRNA yielded only mRNA3. Only when the mRNA3 5' splice site was inactivated by mutation was M2 mRNA made in uninfected cells and in uninfected cell extracts. In influenza virus-infected cells, M2 mRNA was made, but only after a delay, suggesting that newly synthesized viral gene product(s) were needed to activate the M2 5' splice site. We present strong evidence that these gene products are the complex of the three polymerase proteins, the same complex that functions in the transcription and replication of the viral genome. Gel shift experiments showed that the viral polymerase complex bound to the 5' end of the viral M1 mRNA in a sequence-specific and cap-dependent manner. During in vitro splicing catalyzed by uninfected cell extracts, the binding of the viral polymerase complex blocked the mRNA3 5' splice site, resulting in the switch to the M2 mRNA 5' splice site and the production of M2 mRNA.