4 resultados para Probabilistic Latent Semantic Analysis
em National Center for Biotechnology Information - NCBI
Resumo:
This article reviews attempts to characterize the mental operations mediated by left inferior prefrontal cortex, especially the anterior and inferior portion of the gyrus, with the functional neuroimaging techniques of positron emission tomography and functional magnetic resonance imaging. Activations in this region occur during semantic, relative to nonsemantic, tasks for the generation of words to semantic cues or the classification of words or pictures into semantic categories. This activation appears in the right prefrontal cortex of people known to be atypically right-hemisphere dominant for language. In this region, activations are associated with meaningful encoding that leads to superior explicit memory for stimuli and deactivations with implicit semantic memory (repetition priming) for words and pictures. New findings are reported showing that patients with global amnesia show deactivations in the same region associated with repetition priming, that activation in this region reflects selection of a response from among numerous relative to few alternatives, and that activations in a portion of this region are associated specifically with semantic relative to phonological processing. It is hypothesized that activations in left inferior prefrontal cortex reflect a domain-specific semantic working memory capacity that is invoked more for semantic than nonsemantic analyses regardless of stimulus modality, more for initial than for repeated semantic analysis of a word or picture, more when a response must be selected from among many than few legitimate alternatives, and that yields superior later explicit memory for experiences.
Resumo:
Although highly active antiretroviral therapy (HAART) in the form of triple combinations of drugs including protease inhibitors can reduce the plasma viral load of some HIV-1-infected individuals to undetectable levels, it is unclear what the effects of these regimens are on latently infected CD4+ T cells and what role these cells play in the persistence of HIV-1 infection in individuals receiving such treatment. The present study demonstrates that highly purified CD4+ T cells from 13 of 13 patients receiving HAART with an average treatment time of 10 months and with undetectable (<500 copies HIV RNA/ml) plasma viremia by a commonly used bDNA assay carried integrated proviral DNA and were capable of producing infectious virus upon cellular activation in vitro. Phenotypic analysis of HIV-1 produced by activation of latently infected CD4+ T cells revealed the presence in some patients of syncytium-inducing virus. In addition, the presence of unintegrated HIV-1 DNA in infected resting CD4+ T cells from patients receiving HAART, even those with undetectable plasma viremia, suggests persistent active virus replication in vivo.
Resumo:
This paper describes a variety of statistical methods for obtaining precise quantitative estimates of the similarities and differences in the structures of semantic domains in different languages. The methods include comparing mean correlations within and between groups, principal components analysis of interspeaker correlations, and analysis of variance of speaker by question data. Methods for graphical displays of the results are also presented. The methods give convergent results that are mutually supportive and equivalent under suitable interpretation. The methods are illustrated on the semantic domain of emotion terms in a comparison of the semantic structures of native English and native Japanese speaking subjects. We suggest that, in comparative studies concerning the extent to which semantic structures are universally shared or culture-specific, both similarities and differences should be measured and compared rather than placing total emphasis on one or the other polar position.
Resumo:
The availability of complete genome sequences and mRNA expression data for all genes creates new opportunities and challenges for identifying DNA sequence motifs that control gene expression. An algorithm, “MobyDick,” is presented that decomposes a set of DNA sequences into the most probable dictionary of motifs or words. This method is applicable to any set of DNA sequences: for example, all upstream regions in a genome or all genes expressed under certain conditions. Identification of words is based on a probabilistic segmentation model in which the significance of longer words is deduced from the frequency of shorter ones of various lengths, eliminating the need for a separate set of reference data to define probabilities. We have built a dictionary with 1,200 words for the 6,000 upstream regulatory regions in the yeast genome; the 500 most significant words (some with as few as 10 copies in all of the upstream regions) match 114 of 443 experimentally determined sites (a significance level of 18 standard deviations). When analyzing all of the genes up-regulated during sporulation as a group, we find many motifs in addition to the few previously identified by analyzing the subclusters individually to the expression subclusters. Applying MobyDick to the genes derepressed when the general repressor Tup1 is deleted, we find known as well as putative binding sites for its regulatory partners.