14 resultados para Prior 1,2,3,4 Landfill (Centralia, Ill.)
em National Center for Biotechnology Information - NCBI
Resumo:
The decrement in dopamine levels exceeds the loss of dopaminergic neurons in Parkinson’s disease (PD) patients and experimental models of PD. This discrepancy is poorly understood and may represent an important event in the pathogenesis of PD. Herein, we report that the rate-limiting enzyme in dopamine synthesis, tyrosine hydroxylase (TH), is a selective target for nitration following exposure of PC12 cells to either peroxynitrite or 1-methyl-4-phenylpyridiniun ion (MPP+). Nitration of TH also occurs in mouse striatum after MPTP administration. Nitration of tyrosine residues in TH results in loss of enzymatic activity. In the mouse striatum, tyrosine nitration-mediated loss in TH activity parallels the decline in dopamine levels whereas the levels of TH protein remain unchanged for the first 6 hr post MPTP injection. Striatal TH was not nitrated in mice overexpressing copper/zinc superoxide dismutase after MPTP administration, supporting a critical role for superoxide in TH tyrosine nitration. These results indicate that tyrosine nitration-induced TH inactivation and consequently dopamine synthesis failure, represents an early and thus far unidentified biochemical event in MPTP neurotoxic process. The resemblance of the MPTP model with PD suggests that a similar phenomenon may occur in PD, influencing the severity of parkisonian symptoms.
Resumo:
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) damages dopaminergic neurons in the substantia nigra pars compacta (SNpc) as seen in Parkinson's disease. Here, we show that the pro-apoptotic protein Bax is highly expressed in the SNpc and that its ablation attenuates SNpc developmental neuronal apoptosis. In adult mice, there is an up-regulation of Bax in the SNpc after MPTP administration and a decrease in Bcl-2. These changes parallel MPTP-induced dopaminergic neurodegeneration. We also show that mutant mice lacking Bax are significantly more resistant to MPTP than their wild-type littermates. This study demonstrates that Bax plays a critical role in the MPTP neurotoxic process and suggests that targeting Bax may provide protective benefit in the treatment of Parkinson's disease.
Resumo:
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) causes nigrostriatal dopaminergic pathway damage similar to that observed in Parkinson disease (PD). To study the role of NO radical in MPTP-induced neurotoxicity, we injected MPTP into mice in which nitric oxide synthase (NOS) was inhibited by 7-nitroindazole (7-NI) in a time- and dose-dependent fashion. 7-NI dramatically protected MPTP-injected mice against indices of severe injury to the nigrostriatal dopaminergic pathway, including reduction in striatal dopamine contents, decreases in numbers of nigral tyrosine hydroxylase-positive neurons, and numerous silver-stained degenerating nigral neurons. The resistance of 7-NI-injected mice to MPTP is not due to alterations in striatal pharmacokinetics or content of 1-methyl-4-phenylpyridinium ion (MPP+), the active metabolite of MPTP. To study specifically the role of neuronal NOS (nNOS), MPTP was administered to mutant mice lacking the nNOS gene. Mutant mice are significantly more resistant to MPTP-induced neurotoxicity compared with wild-type littermates. These results indicate that neuronally derived NO mediates, in part, MPTP-induced neurotoxicity. The similarity between the MPTP model and PD raises the possibility that NO may play a significant role in the etiology of PD.
Resumo:
In extracts of immature soybean (Glycine max [L.] Merr.) seeds inositol tetrakisphosphate was formed from [3H]inositol 1,3,4-trisphosphate but not from [3H]inositol 1,4,5-trisphosphate. Inositol 1,3,4-trisphosphate kinase was purified to a specific activity of 3.55 min−1 mg−1 by polyethylenimine clarification and anion-exchange chromatography. The partially purified enzyme converted [3H]inositol 1,3,4-trisphosphate to inositol 1,3,4,5-tetrakisphosphate as the major product and inositol 1,3,4,6- and/or 1,2,3,4-tetrakisphosphate as the minor product. Subsequent experiments revealed a separate inositol 1,3,4,5-tetrakisphosphate 6-kinase activity, which could link these enzymes to inositol hexakisphosphate synthesis via the previously reported inositol 1,3,4,5,6-pentakisphosphate 2-kinase. The apparent Km values for inositol 1,3,4-trisphosphate kinase were 200 ± 0 nm for inositol 1,3,4-trisphosphate and 171 ± 4 μm for ATP, and the reaction was not reversible. The kinetics were such that no activity could be detected using unlabeled inositol 1,3,4-trisphosphate and [γ-32P]ATP, which suggested that other kinases may have been observed when less purified fractions were incubated with radiolabeled ATP. Inositol 1,3,4-trisphosphate kinase was nonspecifically inhibited more than 80% by various inositol polyphosphates at a concentration of 100 μm.
Resumo:
Bipolar mood disorder (BP) is a debilitating syndrome characterized by episodes of mania and depression. We designed a multistage study to detect all major loci predisposing to severe BP (termed BP-I) in two pedigrees drawn from the Central Valley of Costa Rica, where the population is largely descended from a few founders in the 16th–18th centuries. We considered only individuals with BP-I as affected and screened the genome for linkage with 473 microsatellite markers. We used a model for linkage analysis that incorporated a high phenocopy rate and a conservative estimate of penetrance. Our goal in this study was not to establish definitive linkage but rather to detect all regions possibly harboring major genes for BP-I in these pedigrees. To facilitate this aim, we evaluated the degree to which markers that were informative in our data set provided coverage of each genome region; we estimate that at least 94% of the genome has been covered, at a predesignated threshold determined through prior linkage simulation analyses. We report here the results of our genome screen for BP-I loci and indicate several regions that merit further study, including segments in 18q, 18p, and 11p, in which suggestive lod scores were observed for two or more contiguous markers. Isolated lod scores that exceeded our thresholds in one or both families also occurred on chromosomes 1, 2, 3, 4, 5, 7, 13, 15, 16, and 17. Interesting regions highlighted in this genome screen will be followed up using linkage disequilibrium (LD) methods.
Resumo:
The relation between changes in brain and plasma concentrations of neurosteroids and the function and structure of γ-aminobutyric acid type A (GABAA) receptors in the brain during pregnancy and after delivery was investigated in rats. In contrast with plasma, where all steroids increased in parallel, the kinetics of changes in the cerebrocortical concentrations of progesterone, allopregnanolone (AP), and allotetrahydrodeoxycorticosterone (THDOC) diverged during pregnancy. Progesterone was already maximally increased between days 10 and 15, whereas AP and allotetrahydrodeoxycorticosterone peaked around day 19. The stimulatory effect of muscimol on 36Cl− uptake by cerebrocortical membrane vesicles was decreased on days 15 and 19 of pregnancy and increased 2 days after delivery. Moreover, the expression in cerebral cortex and hippocampus of the mRNA encoding for γ2L GABAA receptor subunit decreased during pregnancy and had returned to control values 2 days after delivery. Also α1,α2, α3, α4, β1, β2, β3, and γ2S mRNAs were measured and failed to change during pregnancy. Subchronic administration of finasteride, a 5α-reductase inhibitor, to pregnant rats reduced the concentrations of AP more in brain than in plasma as well as prevented the decreases in both the stimulatory effect of muscimol on 36Cl− uptake and the decrease of γ2L mRNA observed during pregnancy. These results indicate that the plasticity of GABAA receptors during pregnancy and after delivery is functionally related to fluctuations in endogenous brain concentrations of AP whose rate of synthesis/metabolism appears to differ in the brain, compared with plasma, in pregnant rats.
Resumo:
The disulfide bonding pattern of the fourth and fifth epidermal growth factor (EGF)-like domains within the smallest active fragment of thrombomodulin have been determined. In previous work, this fragment was expressed and purified to homogeneity, and its cofactor activity, as measured by Kcat for thrombin activation of protein C, was the same as that for full-length thrombomodulin. CNBr cleavage at the single methionine in the connecting region between the domains and subsequent deglycosylation yielded the individual EGF-like domains. The disulfide bonds were mapped by partial reduction with tris(2-carboxyethyl)phosphine according to the method of Gray [Gray, W. R. (1993) Protein Sci. 2, 1732-1748], which provides unambiguous results. The disulfide bonding pattern of the fourth EGF-like domain was (1-3, 2-4, 5-6), which is the same as that found previously in EGF and in a synthetic version of the fourth EGF-like domain. Surprisingly, the disulfide bonding pattern of the fifth domain was (1-2, 3-4, 5-6), which is unlike that found in EGF or in any other EGF-like domain analyzed so far. This result is in line with an earlier observation that the (1-2, 3-4, 5-6) isomer bound to thrombin more tightly than the EGF-like (1-3, 2-4, 5-6) isomer. The observation that not all EGF-like domains have an EGF-like disulfide bonding pattern reveals an additional element of diversity in the structure of EGF-like domains.
Resumo:
The involvement of a conserved serine (Ser196 at the mu-, Ser177 at the delta-, and Ser187 at the kappa-opioid receptor) in receptor activation is demonstrated by site-directed mutagenesis. It was initially observed during our functional screening of a mu/delta-opioid chimeric receptor, mu delta2, that classical opioid antagonists such as naloxone, naltrexone, naltriben, and H-Tyr-Tic[psi,CH2NH]Phe-Phe-OH (TIPPpsi; Tic = 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) could inhibit forskolin-stimulated adenylyl cyclase activity in CHO cells stably expressing the chimeric receptor. Antagonists also activated the G protein-coupled inward rectifying potassium channel (GIRK1) in Xenopus oocytes coexpressing the mu delta2 opioid receptor and the GIRK1 channel. By sequence analysis and back mutation, it was determined that the observed antagonist activity was due to the mutation of a conserved serine to leucine in the fourth transmembrane domain (S196L). The importance of this serine was further demonstrated by analogous mutations created in the mu-opioid receptor (MORS196L) and delta-opioid receptor (DORS177L), in which classical opioid antagonists could inhibit forskolin-stimulated adenylyl cyclase activity in CHO cells stably expressing either MORS196L or DORS177L. Again, antagonists could activate the GIRK1 channel coexpressed with either MORS196L or DORS177L in Xenopus oocytes. These data taken together suggest a crucial role for this serine residue in opioid receptor activation.
Resumo:
The Mn K-edge x-ray absorption spectra for the pure S states of the tetranuclear Mn cluster of the oxygen-evolving complex of photosystem II during flash-induced S-state cycling have been determined. The relative S-state populations in samples given 0, 1, 2, 3, 4, or 5 flashes were determined from fitting the flash-induced electron paramagnetic resonance (EPR) multiline signal oscillation pattern to the Kok model. The edge spectra of samples given 0, 1, 2, or 3 flashes were combined with EPR information to calculate the pure S-state edge spectra. The edge positions (defined as the zero-crossing of the second derivatives) are 6550.1, 6551.7, 6553.5, and 6553.8 eV for S0, S1, S2, and S3, respectively. In addition to the shift in edge position, the S0--> S1 and S1--> S2 transitions are accompanied by characteristic changes in the shape of the edge, both indicative of Mn oxidation. The edge position shifts very little (0.3 eV) for the S2--> S3 transition, and the edge shape shows only subtle changes. We conclude that probably no direct Mn oxidation is involved in this transition. The proposed Mn oxidation state assignments are as follows: S0 (II, III, IV, IV) or (III, III, III, IV), S1 (III, III, IV, IV), S2 (III, IV, IV, IV), S3 (III, IV, IV, IV).
Resumo:
Synaptotagmin (Syt) is an inositol high-polyphosphate series [IHPS inositol 1,3,4,5-tetrakisphosphate (IP4), inositol 1,3,4,5,6-pentakisphosphate, and inositol 1,2,3,4,5,6-hexakisphosphate] binding synaptic vesicle protein. A polyclonal antibody against the C2B domain (anti-Syt-C2B), an IHPS binding site, was produced. The specificity of this antibody to the C2B domain was determined by comparing its ability to inhibit IP4 binding to the C2B domain with that to inhibit the Ca2+/phospholipid binding to the C2A domain. Injection of the anti-Syt-C2B IgG into the squid giant presynapse did not block synaptic release. Coinjection of IP4 and anti-Syt-C2B IgG failed to block transmitter release, while IP4 itself was a powerful synpatic release blocker. Repetitive stimulation to presynaptic fiber injected with anti-Syt-C2B IgG demonstrated a rapid decline of the postsynaptic response amplitude probably due to its block of synaptic vesicle recycling. Electron microscopy of the anti-Syt-C2B-injected presynapse showed a 90% reduction of the numbers of synaptic vesicles. These results, taken together, indicate that the Syt molecule is central, in synaptic vesicle fusion by Ca2+ and its regulation by IHPS, as well as in the recycling of synaptic vesicles.
Resumo:
Mouse skin tumors contain activated c-H-ras oncogenes, often caused by point mutations at codons 12 and 13 in exon 1 and codons 59 and 61 in exon 2. Mutagenesis by the noncoding apurinic sites can produce G-->T and A-->T transversions by DNA misreplication with more frequent insertion of deoxyadenosine opposite the apurinic site. Papillomas were induced in mouse skin by several aromatic hydrocarbons, and mutations in the c-H-ras gene were determined to elucidate the relationship among DNA adducts, apurinic sites, and ras oncogene mutations. Dibenzo[a,l]pyrene (DB[a,l]P), DB[a,l]P-11,12-dihydrodiol, anti-DB[a,l]P-11,12-diol-13,14-epoxide, DB[a,l]P-8,9-dihydrodiol, 7,12-dimethylbenz[a]anthracene (DMBA), and 1,2,3,4-tetrahydro-DMBA consistently induced a CAA-->CTA mutation in codon 61 of the c-H-ras oncogene. Benzo[a]pyrene induced a GGC-->GTC mutation in codon 13 in 54% of tumors and a CAA-->CTA mutation in codon 61 in 15%. The pattern of mutations induced by each hydrocarbon correlated with its profile of DNA adducts. For example, both DB[a,l]P and DMBA primarily form DNA adducts at the N-3 and/or N-7 of deoxyadenosine that are lost from the DNA by depurination, generating apurinic sites. Thus, these results support the hypothesis that misreplication of unrepaired apurinic sites generated by loss of hydrocarbon-DNA adducts is responsible for transforming mutations leading to papillomas in mouse skin.
Resumo:
Although bacterial strain able to grow in the presence of organic solvents have been isolated, little is known about the mechanism of their resistance. In the present study, 1,2,3,4-tetrahydronaphthalene (tetralin), a solvent with potential applications in industrial biocatalysis, was used to select a resistant mutant of Escherichia coli. The resultant mutant strain was tested for resistance to a wide range of solvents of varying hydrophobicities and was found to be resistant not only to tetralin itself but also to cyclohexane, propylbenzene, and 1,2-dihydronaphthalene. A recombinant library from mutant DNA was used to clone the resistance gene. The sequence of the cloned locus was determined and found to match the sequence of the previously described alkylhydroperoxide reductase operon ahpCF. The mutation was localized to a substitution of valine for glycine at position 142 in the coding region of ahpC, which is the gene encoding the catalytic subunit of the enzyme. The ahpC mutant was found to have an activity that was three times that of the wild type in reducing tetralin hydroperoxide to 1,2,3,4-tetrahydro-1-naphthol. We conclude that the toxicity of such solvents as tetralin is caused by the formation of toxic hydroperoxides in the cell. The ahpC mutation increases the activity of the enzyme toward hydrophobic hydroperoxides, thereby conferring resistance. The ahpC mutant was sensitive to the more hydrophilic solvents xylene and toluene, suggesting that there are additional mechanisms of solvent toxicity. Mutants resistant to a mixture of xylene and tetralin were isolated from the ahpC mutant but not from the wild-type strain.
Resumo:
N-Methyl-D-aspartate (NMDA, 200 microM) evokes the release of [3H]norepinephrine ([3H]NE) from preloaded hippocampal slices. This effect is potentiated by dehydroepiandrosterone sulfate (DHEA S), whereas it is inhibited by pregnenolone sulfate (PREG S) and the high-affinity sigma inverse agonist 1,3-di(2-tolyl)guanidine, at concentrations of > or = 100 nM. Neither 3 alpha-hydroxy-5 alpha-pregnan-20-one nor its sulfate ester modified NMDA-evoked [3H]NE overflow. The sigma antagonists haloperidol and 1-[2-(3,4-dichlorophenyl)-ethyl]-4-methylpiperazine, although inactive by themselves, completely prevented the effects of DHEA S, PREG S, and 1,3-di(2-tolyl)guanidine on NMDA-evoked [3H]NE release. Progesterone (100 nM) mimicked the antagonistic effect of haloperidol and 1-[2-(3,4-dichlorophenyl)ethyl]-4-methyl-piperazine. These results indicate that the tested steroid sulfate esters differentially affected the NMDA response in vitro and suggest that DHEA S acts as a sigma agonist, that PREG S acts as a sigma inverse agonist, and that progesterone may act as a sigma antagonist. Pertussis toxin, which inactivates the Gi/o types of guanine nucleotide-binding protein (Gi/o protein) function, suppresses both effects of DHEA S and PREG S. Since sigma 1 but not sigma 2 receptors are coupled to Gi/o proteins, the present results suggest that DHEA S and PREG S control the NMDA response via sigma 1 receptors.