12 resultados para Primary Cortisol Resistance

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the efficacy of a hairpin ribozyme targeting the 5′ leader sequence of HIV-1 RNA in a transgenic model system. Primary spleen cells derived from transgenic or control mice were infected with HIV-1/MuLV pseudotype virus. A significantly reduced susceptibility to infection in ribozyme-expressing transgenic spleen cells (P = 0.01) was shown. Variation of transgene-expression levels between littermates revealed a dose response between ribozyme expression and viral resistance, with an estimated cut off value below 0.2 copies of hairpin ribozyme per cell. These findings open up possibilities for studies on ribozyme efficacy and anti-HIV-1 gene therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Primary HIV-1 isolates were evaluated for their sensitivity to inhibition by β-chemokines RANTES (regulated upon activation, normal T-cell expressed and secreted), macrophage inflammatory protein 1α (MIP-1α), and MIP-1β. Virus isolates of both nonsyncytium-inducing (NSI) and syncytium-inducing (SI) biological phenotypes recovered from patients at various stages of HIV-1 infection were assessed, and the results indicated that only the isolates with the NSI phenotype were substantially inhibited by the β-chemokines. More important to note, these data demonstrate that resistance to inhibition by β-chemokines RANTES, MIP-1α, and MIP-1β is not restricted to T cell line-adapted SI isolates but is also a consistent property among primary SI isolates. Analysis of isolates obtained sequentially from infected individuals in whom viruses shifted from NSI to SI phenotype during clinical progression exhibited a parallel loss of sensitivity to β-chemokines. Loss of virus sensitivity to inhibition by β-chemokines RANTES, MIP-1α, and MIP-1β was furthermore associated with changes in the third variable (V3) region amino acid residues previously described to correlate with a shift of virus phenotype from NSI to SI. Of interest, an intermediate V3 genotype correlated with a partial inhibition by the β-chemokines. In addition, we also identified viruses sensitive to RANTES, MIP-1α, and MIP-1β of NSI phenotype that were isolated from individuals with AIDS manifestations, indicating that loss of sensitivity to β-chemokine inhibition and shift in viral phenotype are not necessarily prerequisites for the pathogenesis of HIV-1 infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the observation that removal of tumors from metastatic organs reversed their chemoresistance, we hypothesized that chemoresistance is induced by extracellular factors in tumor-bearing organs. By comparing chemosensitivity and proteins in different tumors (primary vs. metastases) and different culture systems (tumor fragment histocultures vs. monolayer cultures derived from the same tumor), we found elevated levels of acidic (aFGF) and basic (bFGF) fibroblast growth factors in the conditioned medium (CM) of solid and metastatic tumors. These CM induced broad spectrum resistance to drugs with diverse structures and action mechanisms (paclitaxel, doxorubicin, 5-fluorouracil). Inhibition of bFGF by mAb and its removal by immunoprecipitation resulted in complete reversal of the CM-induced chemoresistance, whereas inhibition/removal of aFGF resulted in partial reversal. Using CM that had been depleted of aFGF and/or bFGF and subsequently reconstituted with respective human recombinant proteins, we found that bFGF but not aFGF induced chemoresistance whereas aFGF amplified the bFGF effect. aFGF and bFGF fully accounted for the CM effect, indicating these proteins as the underlying mechanism of the chemoresistance. The FGF-induced resistance was not due to reduced intracellular drug accumulation or altered cell proliferation. We further showed that an inhibitor of aFGF/bFGF (suramin) enhanced the in vitro and in vivo activity of chemotherapy, resulting in shrinkage and eradication of well established human lung metastases in mice without enhancing toxicity. These results indicate elevated levels of extracellular aFGF/bFGF as an epigenetic mechanism by which cancer cells elude cytotoxic insult by chemotherapy, and provide a basis for designing new treatment strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In tomato, Ve is implicated in race-specific resistance to infection by Verticillium species causing crop disease. Characterization of the Ve locus involved positional cloning and isolation of two closely linked inverted genes. Expression of individual Ve genes in susceptible potato plants conferred resistance to an aggressive race 1 isolate of Verticillium albo-atrum. The deduced primary structure of Ve1 and Ve2 included a hydrophobic N-terminal signal peptide, leucine-rich repeats containing 28 or 35 potential glycosylation sites, a hydrophobic membrane-spanning domain, and a C-terminal domain with the mammalian E/DXXXLφ or YXXφ endocytosis signals (φ is an amino acid with a hydrophobic side chain). A leucine zipper-like sequence occurs in the hydrophobic N-terminal signal peptide of Ve1 and a Pro-Glu-Ser-Thr (PEST)-like sequence resides in the C-terminal domain of Ve2. These structures suggest that the Ve genes encode a class of cell-surface glycoproteins with receptor-mediated endocytosis-like signals and leucine zipper or PEST sequences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insulin resistance in skeletal muscle and liver may play a primary role in the development of type 2 diabetes mellitus, and the mechanism by which insulin resistance occurs may be related to alterations in fat metabolism. Transgenic mice with muscle- and liver-specific overexpression of lipoprotein lipase were studied during a 2-h hyperinsulinemic–euglycemic clamp to determine the effect of tissue-specific increase in fat on insulin action and signaling. Muscle–lipoprotein lipase mice had a 3-fold increase in muscle triglyceride content and were insulin resistant because of decreases in insulin-stimulated glucose uptake in skeletal muscle and insulin activation of insulin receptor substrate-1-associated phosphatidylinositol 3-kinase activity. In contrast, liver–lipoprotein lipase mice had a 2-fold increase in liver triglyceride content and were insulin resistant because of impaired ability of insulin to suppress endogenous glucose production associated with defects in insulin activation of insulin receptor substrate-2-associated phosphatidylinositol 3-kinase activity. These defects in insulin action and signaling were associated with increases in intracellular fatty acid-derived metabolites (i.e., diacylglycerol, fatty acyl CoA, ceramides). Our findings suggest a direct and causative relationship between the accumulation of intracellular fatty acid-derived metabolites and insulin resistance mediated via alterations in the insulin signaling pathway, independent of circulating adipocyte-derived hormones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

P-glycoprotein (Pgp), a transmembrane efflux pump encoded by the MDR1 gene, transports various lipophilic drugs that enter the cell by passive diffusion through the lipid bilayer. Pgp-expressing multidrug-resistant cell lines are not usually cross-resistant to a hydrophilic antifolate methotrexate (MTX). MTX enters cells primarily through a folate carrier, but passive diffusion becomes the primary mode of MTX uptake in carrier-deficient cells. To test if a deficiency in MTX carrier would allow Pgp to confer resistance to MTX, a MTX carrier-deficient cell line (3T6-C26) was infected with a recombinant retrovirus expressing the human MDR1 gene. The infected 3T6-C26 cells showed increased survival in MTX relative to uninfected cells. Multistep selection of the infected cells with vinblastine led to increased Pgp expression and a concomitant increase in resistance to MTX. MTX resistance of Pgp-expressing 3T6-C26 cells was reduced by Pgp inhibitors, including a Pgp-specific monoclonal antibody UTC2. In contrast, the expression and the inhibition of Pgp had no effect on MTX resistance in 3T6 cells with normal carrier-mediated MTX uptake. Thus, a deficiency in the MTX carrier enables Pgp to confer resistance to MTX, suggesting that hydrophilic compounds may become Pgp substrates when such compounds enter cells by passive diffusion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The coffee berry borer, Hypothenemus hampei, is the most important insect pest of coffee worldwide and has an unusual life history that ensures a high degree of inbreeding. Individual females lay a predominantly female brood within individual coffee berries and because males are flightless there is almost entirely full sib mating. We investigated the genetics associated with this interesting life history after the important discovery of resistance to the cyclodiene type insecticide endosulfan. Both the inheritance of the resistance phenotype and the resistance-associated point mutation in the gamma-aminobutyric acid receptor gene Rdl were examined. Consistent with haplodiploidy, males failed to express and transmit paternally derived resistance alleles. Furthermore, while cytological examination revealed that males are diploid, one set of chromosomes was condensed, and probably nonfunctional, in the somatic cells of all males examined. Moreover, although two sets of chromosomes were present in primary spermatocytes, the chromosomes failed to pair before the single meiotic division, and only one set was packaged in sperm. Thus, the coffee berry borer is "functionally" haplodiploid. Its genetics and life history may therefore represent an interesting intermediate step in the evolution of true haplodiploidy. The influence of this breeding system on the spread of insecticide resistance is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated whether mutations in the p53 tumor suppressor gene alter UV sensitivity and/or repair of UV-induced DNA damage in primary human skin fibroblasts from patients with Li-Fraumeni syndrome, heterozygous for mutations in one allele of the p53 gene (p53 wt/mut) and sublines expressing only mutant p53 (p53 mut). The p53 mut cells were more resistant than the p53 wt/mut cells to UV cytotoxicity and exhibited less UV-induced apoptosis. DNA repair analysis revealed reduced removal of cyclobutane pyrimidine dimers from overall genomic DNA in vivo in p53 mut cells compared with p53 wt/mut or normal cells. However, p53 mut cells retained the ability to preferentially repair damage in the transcribed strands of expressed genes (transcription-coupled repair). These results suggest that loss of p53 function may lead to greater genomic instability by reducing the efficiency of DNA repair but that cellular resistance to DNA-damaging agents may be enhanced through elimination of apoptosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human peripheral blood lymphocytes (PBLs) were transduced with a number of recombinant retroviruses including RRz2, an LNL6-based virus with a ribozyme targeted to the human immunodeficiency virus (HIV) tat gene transcript inserted within the 3' region of the neomycin-resistance gene; RASH5, and LNHL-based virus containing an antisense sequence to the 5' leader region of HIV-1 downstream of the human cytomegalovirus promoter; and R20TAR, an LXSN-based virus with 20 tandem copies of the HIV-1 trans-activation response element sequence driven by the Moloney murine leukemia virus long terminal repeat. After G418 selection, transduced PBLs were challenged with the HIV-1 laboratory strain IIIB and a primary clinical isolate of HIV-1, 82H. Results showed that PBLs from different donors could be transduced and that this conferred resistance to HIV-1 infection. For each of the constructs, a reduction of approximately 70% in p24 antigen level relative to the corresponding control-vector-transduced PBLs was observed. Molecular analyses showed constitutive expression of all the transduced genes from the retroviral long terminal repeat, but no detectable transcript was seen from the internal human cytomegalovirus transcript was seen from the internal human cytomegalovirus promoter for the antisense construct. Transduction of, and consequent transgene expression in, PBLs did not impact on the surface expression of either CD4+/CD8+ (measured by flow cytometry) or on cell doubling time (examined by [3H]thymidine uptake). These results indicate the potential utility of these anti-HIV-1 gene therapeutic agents and show the preclinical value of this PBL assay system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HLA-DR13 has been associated with resistance to two major infectious diseases of humans. To investigate the peptide binding specificity of two HLA-DR13 molecules and the effects of the Gly/Val dimorphism at position 86 of the HLA-DR beta chain on natural peptide ligands, these peptides were acid-eluted from immunoaffinity-purified HLA-DRB1*1301 and -DRB1*1302, molecules that differ only at this position. The eluted peptides were subjected to pool sequencing or individual peptide sequencing by tandem MS or Edman microsequencing. Sequences were obtained for 23 peptides from nine source proteins. Three pool sequences for each allele and the sequences of individual peptides were used to define binding motifs for each allele. Binding specificities varied only at the primary hydrophobic anchor residue, the differences being a preference for the aromatic amino acids Tyr and Phe in DRB1*1302 and a preference for Val in DRB1*1301. Synthetic analogues of the eluted peptides showed allele specificity in their binding to purified HLA-DR, and Ala-substituted peptides were used to identify the primary anchor residues for binding. The failure of some peptides eluted from DRB1*1302 (those that use aromatic amino acids as primary anchors) to bind to DRB1*1301 confirmed the different preferences for peptide anchor residues conferred by the Gly-->Val change at position 86. These data suggest a molecular basis for the differential associations of HLA-DRB1*1301 and DRB1*1302 with resistance to severe malaria and clearance of hepatitis B virus infection.