7 resultados para Previous Expectations

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The temporally encoded information obtained by vibrissal touch could be decoded “passively,” involving only input-driven elements, or “actively,” utilizing intrinsically driven oscillators. A previous study suggested that the trigeminal somatosensory system of rats does not obey the bottom-up order of activation predicted by passive decoding. Thus, we have tested whether this system obeys the predictions of active decoding. We have studied cortical single units in the somatosensory cortices of anesthetized rats and guinea pigs and found that about a quarter of them exhibit clear spontaneous oscillations, many of them around whisking frequencies (≈10 Hz). The frequencies of these oscillations could be controlled locally by glutamate. These oscillations could be forced to track the frequency of induced rhythmic whisker movements at a stable, frequency-dependent, phase difference. During these stimulations, the response intensities of multiunits at the thalamic recipient layers of the cortex decreased, and their latencies increased, with increasing input frequency. These observations are consistent with thalamocortical loops implementing phase-locked loops, circuits that are most efficient in decoding temporally encoded information like that obtained by active vibrissal touch. According to this model, and consistent with our results, populations of thalamic “relay” neurons function as phase “comparators” that compare cortical timing expectations with the actual input timing and represent the difference by their population output rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In most animal species, particularly those in which females engage in polyandry, mate choice is a sequential process in which a female must choose to mate or not to mate with each male encountered. Although a number of theoretical and empirical investigations have examined the effects of sequential mate choice on the operation of sexual selection, how females respond to solicitation by previous mates has received little attention. Here, we report the results of a study carried out on the polyandrous pseudoscorpion, Cordylochernes scorpioides, that assessed the sexual receptivity of once-mated females presented after a lapse of 1.5 hr or 48 hr with either their first mate or a different male. Females exhibited a high level of receptivity to new males, irrespective of intermating interval. By contrast, time between matings exerted a strong effect on female receptivity to previous mates. After a lapse of 48 hr, females did not differ significantly in their receptivity toward previous mates and different males, whereas at 1.5 hr after first mating, females were almost invariably unreceptive to males from whom they had previously accepted sperm. This result could not be attributed to male size or mating experience or to male sexual receptivity. Indeed, males were as willing to transfer sperm to a previous mate as they were to a new female. This difference between males and females in their propensity to remate with the same individual may reflect a conflict between the sexes, with males seeking to minimize postcopulatory sexual selection and females actively keeping open the opportunity for sperm competition and female choice of sperm by discriminating against previous mates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we determine the extent to which host-mediated mutations and a known sampling bias affect evolutionary studies of human influenza A. Previous phylogenetic reconstruction of influenza A (H3N2) evolution using the hemagglutinin gene revealed an excess of nonsilent substitutions assigned to the terminal branches of the tree. We investigate two hypotheses to explain this observation. The first hypothesis is that the excess reflects mutations that were either not present or were at low frequency in the viral sample isolated from its human host, and that these mutations increased in frequency during passage of the virus in embryonated eggs. A set of 22 codons known to undergo such “host-mediated” mutations showed a significant excess of mutations assigned to branches attaching sequences from egg-cultured (as opposed to cell-cultured) isolates to the tree. Our second hypothesis is that the remaining excess results from sampling bias. Influenza surveillance is purposefully biased toward sequencing antigenically dissimilar strains in an effort to identify new variants that may signal the need to update the vaccine. This bias produces an excess of mutations assigned to terminal branches simply because an isolate with no close relatives is by definition attached to the tree by a relatively long branch. Simulations show that the magnitude of excess mutations we observed in the hemagglutinin tree is consistent with expectations based on our sampling protocol. Sampling bias does not affect inferences about evolution drawn from phylogenetic analyses. However, if possible, the excess caused by host-mediated mutations should be removed from studies of the evolution of influenza viruses as they replicate in their human hosts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have shown the utility of delta(15)N to model trophic structure and contaminant bioaccumulation in aquatic food webs. However, cross-system comparisons in delta(15)N can be complicated by differences in delta(15)N at the base of the food chain. Such baseline variation in delta(15)N is difficult to resolve using plankton because of the large temporal variability in the delta(15)N of small organisms that have fast nitrogen turnover. Comparisons using large primary consumers, which have stable tissue isotopic signatures because of their slower nitrogen turnover, show that delta(15)N increases markedly with the human population density in the lake watershed. This shift in delta(15)N likely reflects the high delta(15)N of human sewage. Correcting for this baseline variation in delta(15)N, we report that, contrary to expectations based on previous food-web analysis, the food chains leading up to fish varied by about only one trophic level among the 40 lakes studied. Our results also suggest that the delta(15)N signatures of nitrogen at the base of the food chain will provide a useful tool in the assessment of anthropogenic nutrient inputs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The question of whether proteins originate from random sequences of amino acids is addressed. A statistical analysis is performed in terms of blocked and random walk values formed by binary hydrophobic assignments of the amino acids along the protein chains. Theoretical expectations of these variables from random distributions of hydrophobicities are compared with those obtained from functional proteins. The results, which are based upon proteins in the SWISS-PROT data base, convincingly show that the amino acid sequences in proteins differ from what is expected from random sequences in a statistically significant way. By performing Fourier transforms on the random walks, one obtains additional evidence for nonrandomness of the distributions. We have also analyzed results from a synthetic model containing only two amino acid types, hydrophobic and hydrophilic. With reasonable criteria on good folding properties in terms of thermodynamical and kinetic behavior, sequences that fold well are isolated. Performing the same statistical analysis on the sequences that fold well indicates similar deviations from randomness as for the functional proteins. The deviations from randomness can be interpreted as originating from anticorrelations in terms of an Ising spin model for the hydrophobicities. Our results, which differ from some previous investigations using other methods, might have impact on how permissive with respect to sequence specificity protein folding process is-only sequences with nonrandom hydrophobicity distributions fold well. Other distributions give rise to energy landscapes with poor folding properties and hence did not survive the evolution.