25 resultados para Presentation of awards

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mouse CD1(mCD1) molecules have been reported to present two types of antigens: peptides or proteins and the glycolipid α-galactosylceramide. Here, we demonstrate that a protein antigen, chicken ovalbumin (Ova), must be processed to generate peptides presented by mCD1 to CD8+ T cells. The processing and mCD1-mediated presentation of chicken Ova depend on endosomal localization because inhibitors of endosomal acidification and endosomal recycling pathways block T cell reactivity. Furthermore, a cytoplasmic tail mutant of mCD1, which disrupts endosomal localization, has a greatly reduced capacity to present Ova to mCD1 restricted cells. Newly synthesized mCD1 molecules, however, are not required for Ova presentation, suggesting that molecules recycling from the cell surface are needed. Because of these data showing that mCD1 trafficks to endosomes, where it can bind peptides derived from exogenous proteins, we conclude that peptide antigen presentation by mCD1 is likely to be a naturally occurring phenomenon. In competition assays, α-galactosylceramide did not inhibit Ova presentation, and presentation of the glycolipid was not inhibited by excess Ova or the peptide epitope derived from it. This suggests that, although both lipid and peptide presentation may occur naturally, mCD1 may interact differently with these two types of antigens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hepatitis B virus (HBV) nucleocapsid or core antigen (HBcAg) is extremely immunogenic during infection and after immunization. For example, during many chronic infections, HBcAg is the only antigen capable of eliciting an immune response, and nanogram amounts of HBcAg elicit antibody production in mice. Recent structural analysis has revealed a number of characteristics that may help explain this potent immunogenicity. Our analysis of how the HBcAg is presented to the immune system revealed that the HBcAg binds to specific membrane Ig (mIg) antigen receptors on a high frequency of resting, murine B cells sufficiently to induce B7.1 and B7.2 costimulatory molecules. This enables HBcAg-specific B cells from unprimed mice to take up, process, and present HBcAg to naive Th cells in vivo and to T cell hybridomas in vitro approximately 105 times more efficiently than classical macrophage or dendritic antigen-presenting cells (APC). These results reveal a structure–function relation for the HBcAg, confirm that B cells can function as primary APC, explain the enhanced immunogenicity of HBcAg, and may have relevance for the induction and/or maintenance of chronic HBV infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Class I and class II molecules of the major histocompatibility complex present peptides to T cells. Class I molecules bind peptides that have been generated in the cytosol by proteasomes and delivered into the endoplasmic reticulum by the transporter associated with antigen presentation. In contrast, class II molecules are very efficient in the presentation of antigens that have been internalized and processed in endosomal/lysosomal compartments. In addition, class II molecules can present some cytosolic antigens by a TAP-independent pathway. To test whether this endogenous class II presentation pathway was linked to proteasome-mediated degradation of antigen in the cytosol, the N-end rule was utilized to produce two forms of the influenza virus matrix protein with different in vivo half-lives (10 min vs. 5 h) when expressed in human B cells. Whereas class I molecules presented both the short- and the long-lived matrix proteins, class II molecules presented exclusively the long-lived form of antigen. Thus, rapid degradation of matrix protein in the cytosol precluded its presentation by class II molecules. These data suggest that the turnover of long-lived cytosolic proteins, some of which is mediated by delivery into endosomal/lysosomal compartments, provides a mechanism for immune surveillance by CD4+ T cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell-mediated immune responses are essential for protection against many intracellular pathogens. For Mycobacterium tuberculosis (MTB), protection requires the activity of T cells that recognize antigens presented in the context of both major histocompatibility complex (MHC) class II and I molecules. Since MHC class I presentation generally requires antigen to be localized to the cytoplasmic compartment of antigen-presenting cells, it remains unclear how pathogens that reside primarily within endocytic vesicles of infected macrophages, such as MTB, can elicit specific MHC class I-restricted T cells. A mechanism is described for virulent MTB that allows soluble antigens ordinarily unable to enter the cytoplasm, such as ovalbumin, to be presented through the MHC class I pathway to T cells. The mechanism is selective for MHC class I presentation, since MTB infection inhibited MHC class II presentation of ovalbumin. The MHC class I presentation requires the tubercle bacilli to be viable, and it is dependent upon the transporter associated with antigen processing (TAP), which translocates antigenic peptides from the cytoplasm into the endoplasmic reticulum. The process is mimicked by Listeria monocytogenes and soluble listeriolysin, a pore-forming hemolysin derived from it, suggesting that virulent MTB may have evolved a comparable mechanism that allows molecules in a vacuolar compartment to enter the cytoplasmic presentation pathway for the generation of protective MHC class I-restricted T cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that interleukin 3 (IL-3) enhances the generation of tumor-specific cytotoxic T lymphocytes (CTLs) through the stimulation of host antigen-presenting cells (APCs). The BALB/c (H-2d) spontaneous lung carcinoma line 1 was modified by gene transfection to express ovalbumin as a nominal "tumor antigen" and to secrete IL-3, a cytokine enhancing myeloid development. IL-3-transfected tumor cells are less tumorigenic than the parental cell line, and tumor-infiltrating lymphocytes isolated from these tumors contain increased numbers of tumor-specific CTLs. By using B3Z86/90.14 (B3Z), a unique T-cell hybridoma system restricted to ovalbumin/H-2b and implanting the tumors in (BALB/c x C57BL/6)F1 (H-2d/b) mice, we demonstrate that the IL-3-transfected tumors contain an increased number of a rare population of host cells that can process and "re-present" tumor antigen to CTLs. Electron microscopy allowed direct visualization of these host APCs, and these studies, along with surface marker phenotyping, indicate that these APCs are macrophage-like. The identification of these cells and their enhancement by IL-3 offers a new opportunity for tumor immunotherapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Superantigens, such as staphylococcal enterotoxin B (SEB), elicit a strong proliferative response in T cells when presented in the context of major histocompatibility complex (MHC) class II molecules. We observed a similar T-cell response, when MHC class II-negative epidermal cell lines were employed as antigen-presenting cells. Immunoprecipitation studies indicated that the ligand to which SEB bound had a molecular mass of 46 kDa. Radiolabeled SEB could be immunoprecipitated from isolated membrane proteins on the SCC13 epidermal cell line with a monoclonal antibody directed against the MHC class I molecule, and transfection of the K-562 cell line with MHC class I molecules showed a 75% increased SEB-binding capacity compared with the nontransfected MHC class I- and class II-negative counterpart. In functional studies, antibodies to the MHC class I molecule inhibited T-cell proliferation by at least 50%. From these studies, we conclude that MHC class I molecules on malignant squamous cell carcinomas serve as ligands for SEB, which, given the appropriate costimulatory signals, is sufficient to allow for superantigen-induced T-cell proliferation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have synthesized a recombinant gene encoding a single-chain HLA-A2/beta 2-microglobulin (beta 2m) molecule by linking beta 2m through its carboxyl terminus via a short peptide spacer to HLA-A2 (A*0201). This gene has been expressed in the beta 2m-deficient colorectal tumor cell line DLD-1. Transfection of this cell with the single-chain construct was associated with conformationally correct cell surface expression of a class I molecule of appropriate molecular mass. The single-chain HLA class I molecule presented either exogenously added peptide or (after interferon-gamma treatment) endogenously processed antigen to an influenza A matrix-specific, HLA-A2-restricted cytotoxic T-lymphocyte line. The need for interferon gamma for the processing and presentation of endogenous antigen suggests that DLD-1 has an antigen-processing defect that can be up-regulated, a feature that may be found in other carcinomas. Our data indicate that single-chain HLA class I constructs can form functional class I molecules capable of presenting endogenously processed antigens. Such molecules should be of use for functional studies, as well as providing potential anticancer immunotherapeutic agents or vaccines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presentation of antigenic peptides by major histocompatibility complex (MHC) class II molecules to CD4+ T cells is critical to the function of the immune system. In this study, we have utilized the sorting signal of the lysosomal-associated membrane protein LAMP-1 to target a model antigen, human papillomavirus 16 E7 (HPV-16 E7), into the endosomal and lysosomal compartments. The LAMP-1 sorting signal reroutes the antigen into the MHC class II processing pathway, resulting in enhanced presentation to CD4+ cells in vitro. In vivo immunization experiments in mice demonstrated that vaccinia containing the chimeric E7/LAMP-1 gene generated greater E7-specific lymphoproliferative activity, antibody titers, and cytotoxic T-lymphocyte activities than vaccinia containing the wild-type HPV-16 E7 gene. These results suggest that specific targeting of an antigen to the endosomal and lysosomal compartments enhances MHC class II presentation and vaccine potency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human T-cell-mediated autoimmune diseases are genetically linked to particular alleles of MHC class II genes. Susceptibility to pemphigus vulgaris (PV), an autoimmune disease of the skin, is linked to a rare subtype of HLA-DR4 (DRB1*0402, 1 of 22 known DR4 subtypes). The PV-linked DR4 subtype differs from a rheumatoid arthritis-associated DR4 subtype (DRB1*0404) only at three residues (DR beta 67, 70, and 71). The disease is caused by autoantibodies against desmoglein 3 (DG), and T cells are thought to trigger the autoantibody production against this keratinocyte adhesion molecule. Based on the DRB1*0402 binding motif, seven candidate peptides of the DG autoantigen were identified. T cells from four PV patients with active disease responded to one of these DG peptides (residues 190-204); two patients also responded to DG-(206-220). T-cell clones specific for DG-(190-204) secreted high levels of interleukins 4 and 10, indicating that they may be important in triggering the production of DG-specific autoantibodies. The DG-(190-204) peptide was presented by the disease-linked DRB1*0402 molecule but not by other DR4 subtypes. Site-directed mutagenesis of DRB1*0402 demonstrated that selective presentation of DG-(190-204), which carries a positive charge at the P4 position, was due to the negatively charged residues of the P4 pocket (DR beta 70 and 71). DR beta 71 has a negative charge in DRB1*0402 but a positive charge in other DR4 subtypes, including the DR4 subtypes linked to rheumatoid arthritis. The charge of the P4 pocket in the DR4 peptide binding site therefore appears to be a critical determinant of MHC-linked susceptibility to PV and rheumatoid arthritis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inhibitors of the protease of HIV-1 have been used successfully for the treatment of HIV-1-infected patients and AIDS disease. We tested whether these protease inhibitory drugs exerted effects in addition to their antiviral activity. Here, we show in mice infected with lymphocytic choriomeningitis virus and treated with the HIV-1 protease inhibitor ritonavir a marked inhibition of antiviral cytotoxic T lymphocyte (CTL) activity and impaired major histocompatibility complex class I-restricted epitope presentation in the absence of direct effects on lymphocytic choriomeningitis virus replication. A potential molecular target was found: ritonavir selectively inhibited the chymotrypsin-like activity of the 20S proteasome. In view of the possible role of T cell-mediated immunopathology in AIDS pathogenesis, the two mechanisms of action (i.e., reduction of HIV replication and impairment of CTL responses) may complement each other beneficially. Thus, the surprising ability of ritonavir to block the presentation of antigen to CTLs may possibly contribute to therapy of HIV infections but potentially also to the therapy of virally induced immunopathology, autoimmune diseases, and transplantation reactions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Transgenic expression of the influenza virus hemagglutinin (HA) in the pancreatic islet β cells of InsHA mice leads to peripheral tolerance of HA-specific T cells. To examine the onset of tolerance, InsHA mice were immunized with influenza virus A/PR/8 at different ages, and the presence of nontolerant T cells was determined by the induction of autoimmune diabetes. The data revealed a neonatal period wherein T cells were not tolerant and influenza virus infection led to HA-specific β cell destruction and autoimmune diabetes. The ability to induce autoimmunity gradually waned, such that adult mice were profoundly tolerant to viral HA and were protected from diabetes. Because cross-presentation of islet antigens by professional antigen-presenting cells had been reported to induce peripheral tolerance, the temporal relationship between tolerance induction and activation of HA-specific T cells in the lymph nodes draining the pancreas was examined. In tolerant adult mice, but not in 1-week-old neonates, activation and proliferation of HA-specific CD8+ T cells occurred in the pancreatic lymph nodes. Thus, lack of tolerance in the perinatal period correlated with lack of activation of antigen-specific CD8+ T cells. This work provides evidence for the developmental regulation of peripheral tolerance induction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Antigen presentation by major histocompatibility complex (MHC) class II molecules requires the participation of different proteases in the endocytic route to degrade endocytosed antigens as well as the MHC class II-associated invariant chain (Ii). Thus far, only the cysteine protease cathepsin (Cat) S appears essential for complete destruction of Ii. The enzymes involved in degradation of the antigens themselves remain to be identified. Degradation of antigens in vitro and experiments using protease inhibitors have suggested that Cat B and Cat D, two major aspartyl and cysteine proteases, respectively, are involved in antigen degradation. We have analyzed the antigen-presenting properties of cells derived from mice deficient in either Cat B or Cat D. Although the absence of these proteases provoked a modest shift in the efficiency of presentation of some antigenic determinants, the overall capacity of Cat B−/− or Cat D−/− antigen-presenting cells was unaffected. Degradation of Ii proceeded normally in Cat B−/− splenocytes, as it did in Cat D−/− cells. We conclude that neither Cat B nor Cat D are essential for MHC class II-mediated antigen presentation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is not known how human immunodeficiency virus type 1 (HIV-1)-derived antagonist peptides interfere with intracellular activation of cytotoxic T lymphocytes (CTL). We identified Gag epitope variants in HIV-1-infected patients that act as antagonists of CTL responses to unmutated epitopes. We then investigated the effect that presentation of each variant has on the early events of T cell receptor (TCR) signal transduction. We found that altered peptide ligands (APL) failed to induce phosphorylation of pp36, a crucial adaptor protein involved in TCR signal transduction. We further investigated the effect that simultaneous presentation of APL and native antigen at low, physiological, peptide concentrations (1 nM) has on TCR signal transduction, and we found that the presence of APL can completely inhibit induction of the protein tyrosine phosphorylation events of the TCR signal transduction cascade.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The affinity between molecules depends both on the nature and presentation of the contacts. Here, we observe coupling of functional and structural elements when a protein binding domain is evolved to a smaller functional mimic. Previously, a 38-residue form of the 59-residue B-domain of protein A, termed Z38, was selected by phage display. Z38 contains 13 mutations and binds IgG only 10-fold weaker than the native B-domain. We present the solution structure of Z38 and show that it adopts a tertiary structure remarkably similar to that observed for the first two helices of B-domain in the B-domain/Fc complex [Deisenhofer, J. (1981) Biochemistry 20, 2361–2370], although it is significantly less stable. Based on this structure, we have improved on Z38 by designing a 34-residue disulfide-bonded variant (Z34C) that has dramatically enhanced stability and binds IgG with 9-fold higher affinity. The improved stability of Z34C led to NMR spectra with much greater chemical shift dispersion, resulting in a more precisely determined structure. Z34C, like Z38, has a structure virtually identical to the equivalent region from native protein A domains. The well-defined hydrophobic core of Z34C reveals key structural features that have evolved in this small, functional domain. Thus, the stabilized two-helix peptide, about half the size and having one-third of the remaining residues altered, accurately mimics both the structure and function of the native domain.