7 resultados para Present and future effects
em National Center for Biotechnology Information - NCBI
Resumo:
The past two decades have seen an enormous growth in the field of human brain mapping. Investigators have extensively exploited techniques such as positron emission tomography and MRI to map patterns of brain activity based on changes in cerebral hemodynamics. However, until recently, most studies have investigated equilibrium changes in blood flow measured over time periods upward of 1 min. The advent of high-speed MRI methods, capable of imaging the entire brain with a temporal resolution of a few seconds, allows for brain mapping based on more transient aspects of the hemodynamic response. Today it is now possible to map changes in cerebrovascular parameters essentially in real time, conferring the ability to observe changes in brain state that occur over time periods of seconds. Furthermore, because robust hemodynamic alterations are detectable after neuronal stimuli lasting only a few tens of milliseconds, a new class of task paradigms designed to measure regional responses to single sensory or cognitive events can now be studied. Such “event related” functional MRI should provide for fundamentally new ways to interrogate brain function, and allow for the direct comparison and ultimately integration of data acquired by using more traditional behavioral and electrophysiological methods.
Resumo:
Chronic exposure to cocaine leads to prominent, long-lasting changes in behavior that characterize a state of addiction. The striatum, including the nucleus accumbens and caudoputamen, is an important substrate for these actions. We previously have shown that long-lasting Fos-related proteins of 35–37 kDa are induced in the striatum by chronic cocaine administration. In the present study, the identity and functional role of these Fos-related proteins were examined using fosB mutant mice. The striatum of these mice completely lacked basal levels of the 35- to 37-kDa Fos-related proteins as well as their induction by chronic cocaine administration. This deficiency was associated with enhanced behavioral responses to cocaine: fosB mutant mice showed exaggerated locomotor activation in response to initial cocaine exposures as well as robust conditioned place preference to a lower dose of cocaine, compared with wild-type littermates. These results establish the long-lasting Fos-related proteins as products of the fosB gene (specifically ΔFosB isoforms) and suggest that transcriptional regulation by fosB gene products plays a critical role in cocaine-induced behavioral responses. This finding demonstrates that a Fos family member protein plays a functional role in behavioral responses to drugs of abuse and implicates fosB gene products as important determinants of cocaine abuse.
Resumo:
Our global impact is finally receiving the scientific attention it deserves. The outcome will largely determine the future course of evolution. Human-modified ecosystems are shaped by our activities and their side effects. They share a common set of traits including simplified food webs, landscape homogenization, and high nutrient and energy inputs. Ecosystem simplification is the ecological hallmark of humanity and the reason for our evolutionary success. However, the side effects of our profligacy and poor resource practices are now so pervasive as to threaten our future no less than that of biological diversity itself. This article looks at human impact on ecosystems and the consequences for evolution. It concludes that future evolution will be shaped by our awareness of the global threats, our willingness to take action, and our ability to do so. Our ability is presently hampered by several factors, including the poor state of ecosystem and planetary knowledge, ignorance of human impact, lack of guidelines for sustainability, and a paucity of good policies, practices, and incentives for adopting those guidelines in daily life. Conservation philosophy, science, and practice must be framed against the reality of human-dominated ecosystems, rather than the separation of humanity and nature underlying the modern conservation movement. The steps scientists can take to imbed science in conservation and conservation in the societal process affecting the future of ecosystems and human well-being are discussed.
Resumo:
Cellular anatomy and expression of glycine decarboxylase (GDC) protein were studied during leaf development of the C3-C4 intermediate species Moricandia arvensis. Leaf anatomy was initially C3-like and the number and profile area of mitochondria in the bundle-sheath cells were the same as those in adjacent mesophyll cells. Between a leaf length of 6 and 12 mm there was a bundle-sheath-specific, 4-fold increase in the number of mitochondrial profiles, followed by a doubling of their individual profile areas as the leaves expanded further. Subunits of GDC were present in whole-leaf extracts before the anatomical development of bundle-sheath cells. Whereas the GDC H-protein content of leaves increased steadily throughout development, the increase in GDC P-protein was synchronous with the development of mitochondria in the bundle sheath. The P-protein was confined to bundle-sheath mitochondria throughout leaf development, and its content in individual mitochondria increased before the anatomical development of the bundle sheath. Anatomical and biochemical attributes of the C3-C4 character were present in the cotyledons and sepals but not in other photosynthetic organs/tissues. In leaves and cotyledons that developed in the dark, the expression of the P-protein and the organellar development were reduced but the bundle-sheath cell specificity was retained.
Resumo:
This talk, which was the keynote address of the NAS Colloquium on Human-Machine Communication by Voice, discusses the past, present, and future of human-machine communications, especially speech recognition and speech synthesis. Progress in these technologies is reviewed in the context of the general progress in computer and communications technologies.
Resumo:
A 1747-bp insertion within a lignin peroxidase allele of Phanerochaete chrysosporium BKM-F-1767 is described. Pce1, the element, lies immediately adjacent to the fourth intron of lip12. Southern blots reveal the presence of Pce1-homologous sequences in other P. chrysosporium strains. Transposon-like features include inverted terminal repeats and a dinucleotide (TA) target duplication. Atypical of transposons, Pce1 is present at very low copy numbers (one to five copies), and conserved transposase motifs are lacking. The mutation transcriptionally inactivates lip12 and is inherited in a 1:1 Mendelian fashion among haploid progeny. Thus, Pce1 is a transposon-like element that may play a significant role in generating ligninolytic variation in certain P. chrysosporium strains.