3 resultados para Pre-term
em National Center for Biotechnology Information - NCBI
Resumo:
Localized, chemical two-photon photolysis of caged glutamate was used to map the changes in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors caused by long-term synaptic depression (LTD) in cerebellar Purkinje cells. LTD produced by pairing parallel fiber activity with depolarization was accompanied by a decline in the response of Purkinje cells to uncaged glutamate that accounted for both the time course and magnitude of LTD. This depression of glutamate responses was observed not only at the site of parallel fiber stimulation but also at more distant sites. The amount of LTD decreased with distance and was half-maximal 50 μm away from the site of parallel fiber activity. Estimation of the number of parallel fibers active during LTD induction indicates that LTD modified glutamate receptors not only at active synapses but also at 600 times as many inactive synapses on a single Purkinje cell. Therefore, both active and inactive parallel fiber synapses can undergo changes at a postsynaptic locus as a result of associative pre- and postsynaptic activity.
Resumo:
Long-term potentiation (LTP), an increase in synaptic efficacy believed to underlie learning and memory mechanisms, has been proposed to involve structural modifications of synapses. Precise identification of the morphological changes associated with LTP has however been hindered by the difficulty in distinguishing potentiated or activated from nonstimulated synapses. Here we used a cytochemical method that allowed detection in CA1 hippocampus at the electron microscopy level of a stimulation-specific, D-AP5-sensitive accumulation of calcium in postsynaptic spines and presynaptic terminals following application of high-frequency trains. Morphometric analyses carried out 30-40 min after LTP induction revealed dramatic ultrastructural differences between labeled and nonlabeled synapses. The majority of labeled synapses (60%) exhibited perforated postsynaptic densities, whereas this proportion was only 20% in nonlabeled synaptic contacts. Labeled synaptic profiles were also characterized by a larger apposition zone between pre- and postsynaptic structures, longer postsynaptic densities, and enlarged spine profiles. These results add strong support to the idea that ultrastructural modifications and specifically an increase in perforated synapses are associated with LTP induction in field CA1 of hippocampus and they suggest that a majority of activated contacts may exhibit such changes.
Resumo:
Evidence is presented for a distinctive type of hippocampal synaptic modification [previously described for a molluscan gamma-aminobutyric acid (GABA) synapse after paired pre- and postsynaptic excitation]: transformation of GABA-mediated synaptic inhibition into synaptic excitation. This transformation persists with no further paired stimulation for 60 min or longer and is termed long-term transformation. Long-term transformation is shown to contribute to pairing-induced long-term potentiation but not to long-term potentiation induced by presynaptic stimulation alone. Further support for such mechanistic divergence is provided by pharmacologic effects on long-term transformation as well as these two forms of long-term potentiation by Cl- channel blockers, glutamate and GABA antagonists, as well as the endogenous cannabinoid ligand anandamide.