3 resultados para Pre-auricular approach
em National Center for Biotechnology Information - NCBI
New approach for inhibiting Rev function and HIV-1 production using the influenza virus NS1 protein.
Resumo:
The Rev protein of HIV-1, which facilitates the nuclear export of HIV-1 pre-mRNAs, has been a target for antiviral therapy. Here we describe a new strategy for inhibiting Rev function and HIV-1 replication. In contrast to previous approaches, we use a wild-type rather than a mutant Rev protein and covalently link this Rev sequence to the NS1 protein of influenza A virus, a protein that inhibits the nuclear export of mRNAs. The NS1 protein contains an RNA-binding domain mutation (RM), so that the only functional RNA-binding domain in the chimeric protein (NS1RM-Rev) is in the Rev protein sequence. In the presence of the NS1RM-Rev chimeric protein, HIV-1 pre-mRNAs were retained in, rather than exported from, the nucleus. In addition, this chimeric protein effectively inhibited Rev function in trans in transfection experiments and effectively inhibited the production of HIV-1 in tissue culture cells transfected with an infectious molecular clone of HIV-1 DNA. The inhibitory activities of the NS1RM-Rev chimera were at least equivalent to those of the Rev M10 mutant protein, which has been considered to be the prototype trans inhibitor of Rev function and is currently in phase I clinical trials for the treatment of AIDS patients. We discuss (i) the potential for increasing the inhibitory activity of NS1-Rev chimeras against HIV-1 and (ii) the need for additional studies to evaluate these chimeras for the treatment of AIDS.
Resumo:
Advances in screening technologies allowing the identification of growth factor receptors solely by virtue of DNA or protein sequence comparison call for novel methods to isolate corresponding ligand growth factors. The EPH-like receptor tyrosine kinase (RTK) HEK (human EPH-like kinase) was identified previously as a membrane antigen on the LK63 human pre-B-cell line and overexpression in leukemic specimens and cell lines suggested a role in oncogenesis. We developed a biosensor-based approach using the immobilized HEK receptor exodomain to detect and monitor purification of the HEK ligand. A protein purification protocol, which included HEK affinity chromatography, achieved a 1.8 X 10(6)-fold purification of an approximately 23-kDa protein from human placental conditioned medium. Analysis of specific sHEK (soluble extracellular domain of HEK) ligand interactions in the first and final purification steps suggested a ligand concentration of 40 pM in the source material and a Kd of 2-3 nM. Since the purified ligand was N-terminally blocked, we generated tryptic peptides and N-terminal amino acid sequence analysis of 7 tryptic fragments of the S-pyridylethylated protein unequivocally matched the sequence for AL-1, a recently reported ligand for the related EPH-like RTK REK7 (Winslow, J.W., Moran, P., Valverde, J., Shih, A., Yuan, J.Q., Wong, S.C., Tsai, S.P., Goddard, A., Henzel, W.J., Hefti, F., Beck, K.D., & Caras, I.W. (1995) Neuron 14, 973-981). Our findings demonstrate the application of biosensor technology in ligand purification and show that AL-1, as has been found for other ligands of the EPH-like RTK family, binds more than one receptor.
Resumo:
Linkage disequilibrium between polymorphisms in a natural population may result from various evolutionary forces, including random genetic drift due to sampling of gametes during reproduction, restricted migration between subpopulations in a subdivided population, or epistatic selection. In this report, we present evidence that the majority of significant linkage disequilibria observed in introns of the alcohol dehydrogenase locus (Adh) of Drosophila pseudoobscura are due to epistatic selection maintaining secondary structure of precursor mRNA (pre-mRNA). Based on phylogenetic-comparative analysis and a likelihood approach, we propose secondary structure models of Adh pre-mRNA for the regions of the adult intron and intron 2 where clustering of linkage disequilibria has been observed. Furthermore, we applied the likelihood ratio test to the phylogenetically predicted secondary structure in intron 1. In contrast to the other two structures, polymorphisms associated with the more conserved stem-loop structure of intron 1 are in low frequency, and linkage disequilibria have not been observed. These findings are qualitatively consistent with a model of compensatory fitness interactions. This model assumes that mutations disrupting pairing in a secondary structural element are individually deleterious if they destabilize a functionally important structure; a second "compensatory" mutation, however, may restabilize the structure and restore fitness.