4 resultados para Practice-based Approach

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elucidating the genetic basis of human phenotypes is a major goal of contemporary geneticists. Logically, two fundamental and contrasting approaches are available, one that begins with a phenotype and concludes with the identification of a responsible gene or genes; the other that begins with a gene and works toward identifying one or more phenotypes resulting from allelic variation of it. This paper provides a conceptual overview of phenotype-based vs. gene-based procedures with emphasis on gene-based methods. A key feature of a gene-based approach is that laboratory effort first is devoted to developing an assay for mutations in the gene under regard; the assay then is applied to the evaluation of large numbers of unrelated individuals with a variety of phenotypes that are deemed potentially resulting from alleles at the gene. No effort is directed toward chromosomally mapping the loci responsible for the phenotypes scanned. Example is made of my laboratory’s successful use of a gene-based approach to identify genes causing hereditary diseases of the retina such as retinitis pigmentosa. Reductions in the cost and improvements in the speed of scanning individuals for DNA sequence anomalies may make a gene-based approach an efficient alternative to phenotype-based approaches to correlating genes with phenotypes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an approach for evaluating the efficacy of combination antitumor agent schedules that accounts for order and timing of drug administration. Our model-based approach compares in vivo tumor volume data over a time course and offers a quantitative definition for additivity of drug effects, relative to which synergism and antagonism are interpreted. We begin by fitting data from individual mice receiving at most one drug to a differential equation tumor growth/drug effect model and combine individual parameter estimates to obtain population statistics. Using two null hypotheses: (i) combination therapy is consistent with additivity or (ii) combination therapy is equivalent to treating with the more effective single agent alone, we compute predicted tumor growth trajectories and their distribution for combination treated animals. We illustrate this approach by comparing entire observed and expected tumor volume trajectories for a data set in which HER-2/neu-overexpressing MCF-7 human breast cancer xenografts are treated with a humanized, anti-HER-2 monoclonal antibody (rhuMAb HER-2), doxorubicin, or one of five proposed combination therapy schedules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advances in screening technologies allowing the identification of growth factor receptors solely by virtue of DNA or protein sequence comparison call for novel methods to isolate corresponding ligand growth factors. The EPH-like receptor tyrosine kinase (RTK) HEK (human EPH-like kinase) was identified previously as a membrane antigen on the LK63 human pre-B-cell line and overexpression in leukemic specimens and cell lines suggested a role in oncogenesis. We developed a biosensor-based approach using the immobilized HEK receptor exodomain to detect and monitor purification of the HEK ligand. A protein purification protocol, which included HEK affinity chromatography, achieved a 1.8 X 10(6)-fold purification of an approximately 23-kDa protein from human placental conditioned medium. Analysis of specific sHEK (soluble extracellular domain of HEK) ligand interactions in the first and final purification steps suggested a ligand concentration of 40 pM in the source material and a Kd of 2-3 nM. Since the purified ligand was N-terminally blocked, we generated tryptic peptides and N-terminal amino acid sequence analysis of 7 tryptic fragments of the S-pyridylethylated protein unequivocally matched the sequence for AL-1, a recently reported ligand for the related EPH-like RTK REK7 (Winslow, J.W., Moran, P., Valverde, J., Shih, A., Yuan, J.Q., Wong, S.C., Tsai, S.P., Goddard, A., Henzel, W.J., Hefti, F., Beck, K.D., & Caras, I.W. (1995) Neuron 14, 973-981). Our findings demonstrate the application of biosensor technology in ligand purification and show that AL-1, as has been found for other ligands of the EPH-like RTK family, binds more than one receptor.