5 resultados para Power to decide process

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DsbA, the disulfide bond catalyst of Escherichia coli, is a periplasmic protein having a thioredoxin-like Cys-30-Xaa-Xaa-Cys-33 motif. The Cys-30–Cys-33 disulfide is donated to a pair of cysteines on the target proteins. Although DsbA, having high oxidizing potential, is prone to reduction, it is maintained essentially all oxidized in vivo. DsbB, an integral membrane protein having two pairs of essential cysteines, reoxidizes DsbA that has been reduced upon functioning. It is not known, however, what might provide the overall oxidizing power to the DsbA–DsbB disulfide bond formation system. We now report that E. coli mutants defective in the hemA gene or in the ubiA-menA genes markedly accumulate the reduced form of DsbA during growth under the conditions of protoheme deprivation as well as ubiquinone/menaquinone deprivation. Disulfide bond formation of β-lactamase was impaired under these conditions. Intracellular state of DsbB was found to be affected by deprivation of quinones, such that it accumulates first as a reduced form and then as a form of a disulfide-linked complex with DsbA. This is followed by reduction of the bulk of DsbA molecules. These results suggest that the respiratory electron transfer chain participates in the oxidation of DsbA, by acting primarily on DsbB. It is remarkable that a cellular catalyst of protein folding is connected to the respiratory chain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hematopoiesis depends on a pool of quiescent hematopoietic stem/progenitor cells. When exposed to specific cytokines, a portion of these cells enters the cell cycle to generate an amplified progeny. Myeloblastin (MBN) initially was described as involved in proliferation of human leukemia cells. The granulocyte colony-stimulating factor (G-CSF), which stimulates the proliferation of granulocytic precursors, up-regulates MBN expression. Here we show that constitutive overexpression of MBN confers factor-independent growth to murine bone marrow-derived Ba/F3/G-CSFR cells. Our results point to MBN as a G-CSF responsive gene critical to factor-independent growth and indicate that expression of the G-CSF receptor is a prerequisite to this process. A 91-bp MBN promoter region containing PU.1, C/EBP, and c-Myb binding sites is responsive to G-CSF treatment. Although PU.1, C/EBP, and c-Myb transcription factors all were critical for expression of MBN, its up-regulation by G-CSF was associated mainly with PU.1. These findings suggest that MBN is an important target of PU.1 and a key protease for factor-independent growth of hematopoietic cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report studies of energy transfer from the 800-nm absorbing pigment (B800) to the 850-nm absorbing pigment (B850) of the LH2 peripheral antenna complex and from LH2 to the core antenna complex (LH1) in Rhodobacter (Rb.) sphaeroides. The B800 to B850 process was studied in membranes from a LH2-reaction center (no LH1) mutant of Rb. sphaeroides and the LH2 to LH1 transfer was studied in both the wild-type species and in LH2 mutants with blue-shifted B850. The measurements were performed by using approximately 100-fs pulses to probe the formation of acceptor excitations in a two-color pump-probe measurement. Our experiments reveal a B800 to B850 transfer time of approximately 0.7 ps at 296 K and energy transfer from LH2 to LH1 is characterized by a time constant of approximately 3 ps at 296 K and approximately 5 ps at 77 K. In the blue-shifted B850 mutants, the transfer time from B850 to LH1 becomes gradually longer with increasing blue-shift of the B850 band as a result of the decreasing spectral overlap between the antennae. The results have been used to produce a model for the association between the ring-like structures that are characteristic of both the LH2 and LH1 antennae.