9 resultados para Powell, W. S. (William Samuel), 1717-1775.

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

From early in the AIDS epidemic, psychosocial stressors have been proposed as contributors to the variation in disease course. To test this hypothesis, rhesus macaques were assigned to stable or unstable social conditions and were inoculated with the simian immunodeficiency virus. Animals in the unstable condition displayed more agonism and less affiliation, shorter survival, and lower basal concentrations of plasma cortisol compared with stable animals. Early after inoculation, but before the emergence of group differences in cortisol levels, animals receiving social threats had higher concentrations of simian immunodeficiency virus RNA in plasma, and those engaging in affiliation had lower concentrations. The results indicate that social factors can have a significant impact on the course of immunodeficiency disease. Socially induced changes in pituitary–adrenal hormones may be one mechanism mediating this relationship.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Brn-3 subfamily of POU–domain transcription factor genes consists of three highly homologous membersBrn-3a, Brn-3b, and Brn-3c—that are expressed in sensory neurons and in a small number of brainstem nuclei. This paper describes the role of Brn-3c in auditory and vestibular system development. In the inner ear, the Brn-3c protein is found only in auditory and vestibular hair cells, and the Brn-3a and Brn-3b proteins are found only in subsets of spiral and vestibular ganglion neurons. Mice carrying a targeted deletion of the Brn-3c gene are deaf and have impaired balance. These defects reflect a complete loss of auditory and vestibular hair cells during the late embryonic and early postnatal period and a secondary loss of spiral and vestibular ganglion neurons. Together with earlier work demonstrating a loss of trigeminal ganglion neurons and retinal ganglion cells in mice carrying targeted disruptions in the Brn-3a and Brn-3b genes, respectively, the Brn-3c phenotype reported here demonstrates that each of the Brn-3 genes plays distinctive roles in the somatosensory, visual, and auditory/vestibular systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the current model for bacterial cell division, FtsZ protein forms a ring that marks the division plane, creating a cytoskeletal framework for the subsequent action of other proteins such as FtsA. This putative protein complex ultimately generates the division septum. Herein we report that FtsZ and FtsA proteins tagged with green fluorescent protein (GFP) colocalize to division-site ring-like structures in living bacterial cells in a visible space between the segregated nucleoids. Cells with higher levels of FtsZ–GFP or with FtsA–GFP plus excess wild-type FtsZ were inhibited for cell division and often exhibited bright fluorescent spiral tubules that spanned the length of the filamentous cells. This suggests that FtsZ may switch from a septation-competent localized ring to an unlocalized spiral under some conditions and that FtsA can bind to FtsZ in both conformations. FtsZ–GFP also formed nonproductive but localized aggregates at a higher concentration that could represent FtsZ nucleation sites. The general domain structure of FtsZ–GFP resembles that of tubulin, since the C terminus of FtsZ is not required for polymerization but may regulate polymerization state. The N-terminal portion of Rhizobium FtsZ polymerized in Escherichia coli and appeared to copolymerize with E. coli FtsZ, suggesting a degree of interspecies functional conservation. Analysis of several deletions of FtsA–GFP suggests that multiple segments of FtsA are important for its localization to the FtsZ ring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exposure of human and rodent cells to a wide variety of chemoprotective compounds confers resistance against a broad set of carcinogens. For a subset of the chemoprotective compounds, protection is generated by an increase in the abundance of protective enzymes like glutathione S-transferases (GST). Antioxidant responsive elements (AREs) mediate the transcriptional induction of a battery of genes which comprise much of this chemoprotective response system. Past studies identified a necessary ARE “core” sequence of RTGACnnnGC, but this sequence alone is insufficient to mediate induction. In this study, the additional sequences necessary to define a sufficient, functional ARE are identified through systematic mutational analysis of the murine GST Ya ARE. Introduction of the newly identified necessary nucleotides into the regions flanking a nonresponsive, ARE-like, GST-Mu promoter sequence produced an inducible element. A screen of the GenBank database with the newly identified ARE consensus identified 16 genes which contained the functional ARE consensus sequence in their promoters. Included within this group was an ARE sequence from the murine ferritin-L promoter that mediated induction when tested. In an electrophoretic mobility-shift assay, the ferritin-L ARE was bound by ARE–binding protein 1, a protein previously identified as the likely mediator of the chemoprotective response. A three-level ARE classification system is presented to account for the distinct induction strengths observed in our mutagenesis studies. A model of the ARE as a composite regulatory site, where multiple transcription factors interact, is presented to account for the complex characteristics of ARE-mediated chemoprotective gene expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arabidopsis thaliana, a small annual plant belonging to the mustard family, is the subject of study by an estimated 7000 researchers around the world. In addition to the large body of genetic, physiological and biochemical data gathered for this plant, it will be the first higher plant genome to be completely sequenced, with completion expected at the end of the year 2000. The sequencing effort has been coordinated by an international collaboration, the Arabidopsis Genome Initiative (AGI). The rationale for intensive investigation of Arabidopsis is that it is an excellent model for higher plants. In order to maximize use of the knowledge gained about this plant, there is a need for a comprehensive database and information retrieval and analysis system that will provide user-friendly access to Arabidopsis information. This paper describes the initial steps we have taken toward realizing these goals in a project called The Arabidopsis Information Resource (TAIR) (www.arabidopsis.org).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using both confocal immunofluorescence microscopy and biochemical approaches, we have examined the role of β-arrestins in the activation and targeting of extracellular signal-regulated kinase 2 (ERK2) following stimulation of angiotensin II type 1a receptors (AT1aR). In HEK-293 cells expressing hemagglutinin-tagged AT1aR, angiotensin stimulation triggered β-arrestin-2 binding to the receptor and internalization of AT1aR-β-arrestin complexes. Using red fluorescent protein-tagged ERK2 to track the subcellular distribution of ERK2, we found that angiotensin treatment caused the redistribution of activated ERK2 into endosomal vesicles that also contained AT1aR-β-arrestin complexes. This targeting of ERK2 reflects the formation of multiprotein complexes containing AT1aR, β-arrestin-2, and the component kinases of the ERK cascade, cRaf-1, MEK1, and ERK2. Myc-tagged cRaf-1, MEK1, and green fluorescent protein-tagged ERK2 coprecipitated with Flag-tagged β-arrestin-2 from transfected COS-7 cells. Coprecipitation of cRaf-1 with β-arrestin-2 was independent of MEK1 and ERK2, whereas the coprecipitation of MEK1 and ERK2 with β-arrestin-2 was significantly enhanced in the presence of overexpressed cRaf-1, suggesting that binding of cRaf-1 to β-arrestin facilitates the assembly of a cRaf-1, MEK1, ERK2 complex. The phosphorylation of ERK2 in β-arrestin complexes was markedly enhanced by coexpression of cRaf-1, and this effect is blocked by expression of a catalytically inactive dominant inhibitory mutant of MEK1. Stimulation with angiotensin increased the binding of both cRaf-1 and ERK2 to β-arrestin-2, and the association of β-arrestin-2, cRaf-1, and ERK2 with AT1aR. These data suggest that β-arrestins function both as scaffolds to enhance cRaf-1 and MEK-dependent activation of ERK2, and as targeting proteins that direct activated ERK to specific subcellular locations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simple sequence repeats (SSRs), consisting of tandemly repeated multiple copies of mono-, di-, tri-, or tetranucleotide motifs, are ubiquitous in eukaryotic genomes and are frequently used as genetic markers, taking advantage of their length polymorphism. We have examined the polymorphism of such sequences in the chloroplast genomes of plants, by using a PCR-based assay. GenBank searches identified the presence of several (dA)n.(dT)n mononucleotide stretches in chloroplast genomes. A chloroplast (cp) SSR was identified in three pine species (Pinus contorta, Pinus sylvestris, and Pinus thunbergii) 312 bp upstream of the psbA gene. DNA amplification of this repeated region from 11 pine species identified nine length variants. The polymorphic amplified fragments were isolated and the DNA sequence was determined, confirming that the length polymorphism was caused by variation in the length of the repeated region. In the pines, the chloroplast genome is transmitted through pollen and this PCR assay may be used to monitor gene flow in this genus. Analysis of 305 individuals from seven populations of Pinus leucodermis Ant. revealed the presence of four variants with intrapopulational diversities ranging from 0.000 to 0.629 and an average of 0.320. Restriction fragment length polymorphism analysis of cpDNA on the same populations previously failed to detect any variation. Population subdivision based on cpSSR was higher (Gst = 0.22, where Gst is coefficient of gene differentiation) than that revealed in a previous isozyme study (Gst = 0.05). We anticipate that SSR loci within the chloroplast genome should provide a highly informative assay for the analysis of the genetic structure of plant populations.