20 resultados para Pore - CO2 sorption in silica
em National Center for Biotechnology Information - NCBI
Resumo:
The effects of calcium ion on the Na+ activation gate were studied in squid giant axons. Saxitoxin (STX) was used to block ion entry into Na+ channels without hindering access to the membrane surface, making it possible to distinguish surface effects of calcium from pore-occupancy effects. In the presence of STX, gating kinetics were measured from gating current (Ig). The kinetic effects of external calcium concentration changes were small when STX was present. In the absence of STX, lowering the calcium concentration (from 100 to 10 mM) slowed the closing of Na+ channels (measured from INa tails) by more than a factor of 2. Surprisingly, the voltage sensitivity of closing kinetics changed with calcium concentration, and it was modified by STX. Voltage sensitivity apparently depends in part on the ability of calcium to enter and block the channels as voltage is driven negative. In external medium with no added calcium, INa tail current initially increases in amplitude severalfold with the relief of calcium block, then progressively slows and gets smaller, as calcium diffuses out of the layers investing the axon. INa tails seen just before the current disappears suggest that closing in the absence of channel block is very slow or does not occur. INa amplitude and kinetics are completely restored when calcium is returned. The results strongly suggest that calcium occupancy is a requirement for channel closing and that nonoccupied channels fold reversibly into a nonfunctional conformation.
Resumo:
The accumulation of soluble carbohydrates resulting from growth under elevated CO2 may potentially signal the repression of gene activity for the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcS). To test this hypothesis we grew rice (Oryza sativa L.) under ambient (350 μL L−1) and high (700 μL L−1) CO2 in outdoor, sunlit, environment-controlled chambers and performed a cross-switching of growth CO2 concentration at the late-vegetative phase. Within 24 h, plants switched to high CO2 showed a 15% and 23% decrease in rbcS mRNA, whereas plants switched to ambient CO2 increased 27% and 11% in expanding and mature leaves, respectively. Ribulose-1,5-bisphosphate carboxylase/oxygenase total activity and protein content 8 d after the switch increased up to 27% and 20%, respectively, in plants switched to ambient CO2, but changed very little in plants switched to high CO2. Plants maintained at high CO2 showed greater carbohydrate pool sizes and lower rbcS transcript levels than plants kept at ambient CO2. However, after switching growth CO2 concentration, there was not a simple correlation between carbohydrate and rbcS transcript levels. We conclude that although carbohydrates may be important in the regulation of rbcS expression, changes in total pool size alone could not predict the rapid changes in expression that we observed.
Resumo:
Light-dependent inorganic C (Ci) transport and accumulation in air-grown cells of Synechococcus UTEX 625 were examined with a mass spectrometer in the presence of inhibitors or artificial electron acceptors of photosynthesis in an attempt to drive CO2 or HCO3− uptake separately by the cyclic or linear electron transport chains. In the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea, the cells were able to accumulate an intracellular Ci pool of 20 mm, even though CO2 fixation was completely inhibited, indicating that cyclic electron flow was involved in the Ci-concentrating mechanism. When 200 μm N,N-dimethyl-p-nitrosoaniline was used to drain electrons from ferredoxin, a similar Ci accumulation was observed, suggesting that linear electron flow could support the transport of Ci. When carbonic anhydrase was not present, initial CO2 uptake was greatly reduced and the extracellular [CO2] eventually increased to a level higher than equilibrium, strongly suggesting that CO2 transport was inhibited and that Ci accumulation was the result of active HCO3− transport. With 3-(3,4-dichlorophenyl)-1,1-dimethylurea-treated cells, Ci transport and accumulation were inhibited by inhibitors of CO2 transport, such as COS and Na2S, whereas Li+, an HCO3−-transport inhibitor, had little effect. In the presence of N,N-dimethyl-p-nitrosoaniline, Ci transport and accumulation were not inhibited by COS and Na2S but were inhibited by Li+. These results suggest that CO2 transport is supported by cyclic electron transport and that HCO3− transport is supported by linear electron transport.
Resumo:
We have isolated mutants of Synechocystis PCC6803 that grew very slowly in a low-sodium medium, which is unfavorable for HCO3(-) transport, and examined two of these mutants (SC1 and SC2) for their ability to take up CO2 and HCO3(-) in the light. The CO2 transport activity of SC1 and SC2 was much lower than that of the wild type (WT), whereas there was no difference between the mutants and the WT in their activity of HCO3(-) transport. A clone containing a 3.9-kilobase-pair insert DNA that transforms both mutants to the WT phenotype was isolated from a genomic library of WT Synechocystis. Sequencing of the insert DNA in the region of mutations in SC1 and SC2 revealed an open reading frame (designated cotA), which showed significant amino-acid sequence homology to cemA encoding a protein found in the inner envelope membrane of chloroplasts. The cotA gene is present in a single copy and was not cotranscribed with any other gene(s). cotA encodes a protein of 247 amino acids containing four transmembrane domains. There was substitution of a single base in SC1 and two bases in SC2 in their cotA genes. A possible role of the cotA gene product in CO2 transport is discussed.
Resumo:
Aquatic photosynthetic organisms, including the green alga Chlamydomonas reinhardtii, induce a set of genes for a carbon-concentrating mechanism (CCM) to acclimate to CO2-limiting conditions. This acclimation is modulated by some mechanisms in the cell to sense CO2 availability. Previously, a high-CO2-requiring mutant C16 defective in an induction of the CCM was isolated from C. reinhardtii by gene tagging. By using this pleiotropic mutant, we isolated a nuclear regulatory gene, Ccm1, encoding a 699-aa hydrophilic protein with a putative zinc-finger motif in its N-terminal region and a Gln repeat characteristic of transcriptional activators. Introduction of Ccm1 into this mutant restored an active carbon transport through the CCM, development of a pyrenoid structure in the chloroplast, and induction of a set of CCM-related genes. That a 5,128-base Ccm1 transcript and also the translation product of 76 kDa were detected in both high- and low-CO2 conditions suggests that CCM1 might be modified posttranslationally. These data indicate that Ccm1 is essential to control the induction of CCM by sensing CO2 availability in Chlamydomonas cells. In addition, complementation assay and identification of the mutation site of another pleiotropic mutant, cia5, revealed that His-54 within the putative zinc-finger motif of the CCM1 is crucial to its regulatory function.
Resumo:
To investigate the proposed molecular characteristics of sugar-mediated repression of photosynthetic genes during plant acclimation to elevated CO2, we examined the relationship between the accumulation and metabolism of nonstructural carbohydrates and changes in ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) gene expression in leaves of Arabidopsis thaliana exposed to elevated CO2. Long-term growth of Arabidopsis at high CO2 (1000 μL L−1) resulted in a 2-fold increase in nonstructural carbohydrates, a large decrease in the expression of Rubisco protein and in the transcript of rbcL, the gene encoding the large subunit of Rubisco (approximately 35–40%), and an even greater decline in mRNA of rbcS, the gene encoding the small subunit (approximately 60%). This differential response of protein and mRNAs suggests that transcriptional/posttranscriptional processes and protein turnover may determine the final amount of leaf Rubisco protein at high CO2. Analysis of mRNA levels of individual rbcS genes indicated that reduction in total rbcS transcripts was caused by decreased expression of all four rbcS genes. Short-term transfer of Arabidopsis plants grown at ambient CO2 to high CO2 resulted in a decrease in total rbcS mRNA by d 6, whereas Rubisco content and rbcL mRNA decreased by d 9. Transfer to high CO2 reduced the maximum expression level of the primary rbcS genes (1A and, particularly, 3B) by limiting their normal pattern of accumulation through the night period. The decreased nighttime levels of rbcS mRNA were associated with a nocturnal increase in leaf hexoses. We suggest that prolonged nighttime hexose metabolism resulting from exposure to elevated CO2 affects rbcS transcript accumulation and, ultimately, the level of Rubisco protein.
Resumo:
Despite the critical role that terrestrial vegetation plays in the Earth's carbon cycle, very little is known about the potential evolutionary responses of plants to anthropogenically induced increases in concentrations of atmospheric CO2. We present experimental evidence that rising CO2 concentration may have a direct impact on the genetic composition and diversity of plant populations but is unlikely to result in selection favoring genotypes that exhibit increased productivity in a CO2-enriched atmosphere. Experimental populations of an annual plant (Abutilon theophrasti, velvetleaf) and a temperate forest tree (Betula alleghaniensis, yellow birch) displayed responses to increased CO2 that were both strongly density-dependent and genotype-specific. In competitive stands, a higher concentration of CO2 resulted in pronounced shifts in genetic composition, even though overall CO2-induced productivity enhancements were small. For the annual species, quantitative estimates of response to selection under competition were 3 times higher at the elevated CO2 level. However, genotypes that displayed the highest growth responses to CO2 when grown in the absence of competition did not have the highest fitness in competitive stands. We suggest that increased CO2 intensified interplant competition and that selection favored genotypes with a greater ability to compete for resources other than CO2. Thus, while increased CO2 may enhance rates of selection in populations of competing plants, it is unlikely to result in the evolution of increased CO2 responsiveness or to operate as an important feedback in the global carbon cycle. However, the increased intensity of selection and drift driven by rising CO2 levels may have an impact on the genetic diversity in plant populations.
Resumo:
Staphylococcal α-toxin is a 293-residue, single-chain polypeptide that spontaneously assembles into a heptameric pore in target cell membranes. To identify the pore-forming domain, substitution mutants have been produced in which single cysteine residues were introduced throughout the toxin molecule. By attaching the environmentally sensitive dye acrylodan to the sulfhydryl groups, the environment of individual amino acid side chains could be probed. In liposomes, a single 23-amino acid sequence (residues 118–140) was found to move from a polar to a nonpolar environment, indicating that this sequence forms the walls of the pore. However, periodicity in side chain environmental polarity could not be detected in the liposomal system. In the present study, the fluorimetric analyses were extended to physiological target cells. With susceptible cells such as rabbit erythrocytes and human lymphocytes, the 23 central amino acids 118–140 were again found to insert into the membrane; in contrast to the previous study with liposomes, the expected periodicity was now detected. Thus, every other residue in the sequence 126–140 entered a nonpolar environment in a striking display of an amphipathic transmembrane β-barrel. In contrast, human granulocytes were found to bind α-toxin to a similar extent as lymphocytes, but the heptamers forming on these cells failed to insert their pore-forming domain into the membrane. As a consequence, nonfunctional heptamers assembled and the cells remained viable. The data resolve the molecular organization of a pore-forming toxin domain in living cells and reveal that resistant cells can prevent insertion of the functional domain into the bilayer.
Resumo:
Nuclear-localized mtDNA pseudogenes might explain a recent report describing a heteroplasmic mtDNA molecule containing five linked missense mutations dispersed over the contiguous mtDNA CO1 and CO2 genes in Alzheimer’s disease (AD) patients. To test this hypothesis, we have used the PCR primers utilized in the original report to amplify CO1 and CO2 sequences from two independent ρ° (mtDNA-less) cell lines. CO1 and CO2 sequences amplified from both of the ρ° cells, demonstrating that these sequences are also present in the human nuclear DNA. The nuclear pseudogene CO1 and CO2 sequences were then tested for each of the five “AD” missense mutations by restriction endonuclease site variant assays. All five mutations were found in the nuclear CO1 and CO2 PCR products from ρ° cells, but none were found in the PCR products obtained from cells with normal mtDNA. Moreover, when the overlapping nuclear CO1 and CO2 PCR products were cloned and sequenced, all five missense mutations were found, as well as a linked synonymous mutation. Unlike the findings in the original report, an additional 32 base substitutions were found, including two in adjacent tRNAs and a two base pair deletion in the CO2 gene. Phylogenetic analysis of the nuclear CO1 and CO2 sequences revealed that they diverged from modern human mtDNAs early in hominid evolution about 770,000 years before present. These data would be consistent with the interpretation that the missense mutations proposed to cause AD may be the product of ancient mtDNA variants preserved as nuclear pseudogenes.
Resumo:
The number of nuclear pore complexes (NPCs) in individual nuclei of the yeast Saccharomyces cerevisiae was determined by computer-aided reconstruction of entire nuclei from electron micrographs of serially sectioned cells. Nuclei of 32 haploid cells at various points in the cell cycle were modeled and found to contain between 65 and 182 NPCs. Morphological markers, such as cell shape and nuclear shape, were used to determine the cell cycle stage of the cell being examined. NPC number was correlated with cell cycle stage to reveal that the number of NPCs increases steadily, beginning in G1-phase, suggesting that NPC assembly occurs continuously throughout the cell cycle. However, the accumulation of nuclear envelope observed during the cell cycle, indicated by nuclear surface area, is not continuous at the same rate, such that the density of NPCs per unit area of nuclear envelope peaks in apparent S-phase cells. Analysis of the nuclear envelope reconstructions also revealed no preferred NPC-to-NPC distance. However, NPCs were found in large clusters over regions of the nuclear envelope. Interestingly, clusters of NPCs were most pronounced in early mitotic nuclei and were found to be associated with the spindle pole bodies, but the functional significance of this association is unknown.
Resumo:
A common view is that the current global warming rate will continue or accelerate. But we argue that rapid warming in recent decades has been driven mainly by non-CO2 greenhouse gases (GHGs), such as chlorofluorocarbons, CH4, and N2O, not by the products of fossil fuel burning, CO2 and aerosols, the positive and negative climate forcings of which are partially offsetting. The growth rate of non-CO2 GHGs has declined in the past decade. If sources of CH4 and O3 precursors were reduced in the future, the change in climate forcing by non-CO2 GHGs in the next 50 years could be near zero. Combined with a reduction of black carbon emissions and plausible success in slowing CO2 emissions, this reduction of non-CO2 GHGs could lead to a decline in the rate of global warming, reducing the danger of dramatic climate change. Such a focus on air pollution has practical benefits that unite the interests of developed and developing countries. However, assessment of ongoing and future climate change requires composition-specific long-term global monitoring of aerosol properties.
Resumo:
C—H stretching bands, νCH, in the infrared spectrum of single crystals of nominally high purity, of laboratory-grown MgO, and of natural upper mantle olivine, provide an “organic” signature that closely resembles the symmetrical and asymmetrical C—H stretching modes of aliphatic —CH2 units. The νCH bands indicate that H2O and CO2, dissolved in the matrix of these minerals, converted to form H2 and chemically reduced C, which in turn formed C—H entities, probably through segregation into defects such as dislocations. Heating causes the C—H bonds to pyrolyze and the νCH bands to disappear, but annealing at 70°C causes them to reappear within a few days or weeks. Modeling dislocations in MgO suggests that the segregation of C can lead to Cx chains, x = 4, with the terminal C atoms anchored to the MgO matrix by bonding to two O−. Allowing H2 to react with such Cx chains leads to [O2C(CH2)2CO2] or similar precipitates. It is suggested that such Cx—Hy—Oz entities represent protomolecules from which derive the short-chain carboxylic and dicarboxylic and the medium-chain fatty acids that have been solvent-extracted from crushed MgO and olivine single crystals, respectively. Thus, it appears that the hard, dense matrix of igneous minerals represents a medium in which protomolecular units can be assembled. During weathering of rocks, the protomolecular units turn into complex organic molecules. These processes may have provided stereochemically constrained organics to the early Earth that were crucial to the emergence of life.
Resumo:
Wild-type Chlamydomonas reinhardtii cells shifted from high concentrations (5%) of CO2 to low, ambient levels (0.03%) rapidly increase transcription of mRNAs from several CO2-responsive genes. Simultaneously, they develop a functional carbon concentrating mechanism that allows the cells to greatly increase internal levels of CO2 and HCO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{3}^{-}}}\end{equation*}\end{document}. The cia5 mutant is defective in all of these phenotypes. A newly isolated gene, designated Cia5, restores transformed cia5 cells to the phenotype of wild-type cells. The 6,481-bp gene produces a 5.1-kb mRNA that is present constitutively in light in high and low CO2 both in wild-type cells and the cia5 mutant. It encodes a protein that has features of a putative transcription factor and that, likewise, is present constitutively in low and high CO2 conditions. Complementation of cia5 can be achieved with a truncated Cia5 gene that is missing the coding information for 54 C-terminal amino acids. Unlike wild-type cells or cia5 mutants transformed with an intact Cia5 gene, cia5 mutants complemented with the truncated gene exhibit constitutive synthesis of mRNAs from CO2-responsive genes in light under both high and low CO2 conditions. These discoveries suggest that posttranslational changes to the C-terminal domain control the ability of CIA5 to act as an inducer and directly or indirectly control transcription of CO2-responsive genes. Thus, CIA5 appears to be a master regulator of the carbon concentrating mechanism and is intimately involved in the signal transduction mechanism that senses and allows immediate responses to fluctuations in environmental CO2 and HCO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{3}^{-}}}\end{equation*}\end{document} concentrations.
Resumo:
The pyrenoid is a proteinaceous structure found in the chloroplast of most unicellular algae. Various studies indicate that ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is present in the pyrenoid, although the fraction of Rubisco localized there remains controversial. Estimates of the amount of Rubisco in the pyrenoid of Chlamydomonas reinhardtii range from 5% to nearly 100%. Using immunolocalization, the amount of Rubisco localized to the pyrenoid or to the chloroplast stroma was estimated for C. reinhardtii cells grown under different conditions. It was observed that the amount of Rubisco in the pyrenoid varied with growth condition; about 40% was in the pyrenoid when the cells were grown under elevated CO2 and about 90% with ambient CO2. In addition, it is likely that pyrenoidal Rubisco is active in CO2 fixation because in vitro activity measurements showed that most of the Rubisco must be active to account for CO2-fixation rates observed in whole cells. These results are consistent with the idea that the pyrenoid is the site of CO2 fixation in C. reinhardtii and other unicellular algae containing CO2-concentrating mechanisms.
Resumo:
The basis for O2 sensitivity of C4 photosynthesis was evaluated using a C4-cycle-limited mutant of Amaranthus edulis (a phosphoenolpyruvate carboxylase-deficient mutant), and a C3-cycle-limited transformant of Flaveria bidentis (an antisense ribulose-1,5-bisphosphate carboxylase/oxygenase [Rubisco] small subunit transformant). Data obtained with the C4-cycle-limited mutant showed that atmospheric levels of O2 (20 kPa) caused increased inhibition of photosynthesis as a result of higher levels of photorespiration. The optimal O2 partial pressure for photosynthesis was reduced from approximately 5 kPa O2 to 1 to 2 kPa O2, becoming similar to that of C3 plants. Therefore, the higher O2 requirement for optimal C4 photosynthesis is specifically associated with the C4 function. With the Rubisco-limited F. bidentis, there was less inhibition of photosynthesis by supraoptimal levels of O2 than in the wild type. When CO2 fixation by Rubisco is limited, an increase in the CO2 concentration in bundle-sheath cells via the C4 cycle may further reduce the oxygenase activity of Rubisco and decrease the inhibition of photosynthesis by high partial pressures of O2 while increasing CO2 leakage and overcycling of the C4 pathway. These results indicate that in C4 plants the investment in the C3 and C4 cycles must be balanced for maximum efficiency.