4 resultados para Popular culture and globalization

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

During infection of a new host, the first surfaces encountered by herpes simplex viruses are the apical membranes of epithelial cells of mucosal surfaces. These cells are highly polarized, and the protein composition of their apical and basolateral membranes are very different, so that different viral entry pathways have evolved for each surface. To determine whether the viral glycoprotein G (gG) is specifically required for efficient infection of a particular surface of polarized cells, apical and basal surfaces were infected with wild-type virus or a gG deletion mutant. After infection of polarized cells in culture, the gG− virus was deficient in infection of apical surfaces but was able to infect cells through basal membranes, replicate, and spread into surrounding cells. The gG-dependent step in apical infection was a stage beyond attachment. After in vivo infection of apical surfaces of epithelial cells of nonscarified mouse corneas, infection by glycoprotein C− or gG− virus was considerably reduced as compared with that observed after infection with wild-type virus. In contrast, when corneas were scarified, allowing virus access to other cell surfaces, the gG and glycoprotein C deletion mutants infected eyes as efficiently as wild-type viruses. A secondary mutation allowing infection of apical surfaces by gG− virus arose readily during passage of the virus in nonpolarized cells, indicating that either the gG-dependent step of apical infection can be bypassed or that another viral protein can acquire the same function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Following infection with cytomegalovirus, human granulocyte-macrophage progenitors carry the viral genome but fail to support productive replication. Viral transcripts arise from a region encompassing the major regulatory gene locus; however, their structure differs significantly from productive phase transcripts. One class, sense transcripts, is encoded in the same direction as productive phase transcripts but uses two novel start sites in the ie1/ie2 promoter/enhancer region. These transcripts have the potential to encode a novel 94 aa protein. The other class, antisense transcript, is unspliced and complimentary to ie1 exons 2-4, and has the potential to encode novel 154 and 152 aa proteins. Consistent with a role in latency, these transcripts are present in bone marrow aspirates from naturally infected, healthy seropositive donors but are not present in seronegative controls. Sense latent transcripts are present in a majority of seropositive individuals. Consistent with the expression of latent transcripts, antibody to the 94 aa and 152 aa proteins is detectable in the serum of seropositive individuals. Thus, latent infection by cytomegalovirus is accompanied by the presence of latency-associated transcripts and expression of immunogenic proteins. Overall, these results suggest that bone marrow-derived myeloid progenitors are an important natural site of viral latency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Normal somatic cells invariably enter a state of irreversibly arrested growth and altered function after a finite number of divisions. This process, termed replicative senescence, is thought to be a tumor-suppressive mechanism and an underlying cause of aging. There is ample evidence that escape from senescence, or immortality, is important for malignant transformation. By contrast, the role of replicative senescence in organismic aging is controversial. Studies on cells cultured from donors of different ages, genetic backgrounds, or species suggest that senescence occurs in vivo and that organismic lifespan and cell replicative lifespan are under common genetic control. However, senescent cells cannot be distinguished from quiescent or terminally differentiated cells in tissues. Thus, evidence that senescent cells exist and accumulate with age in vivo is lacking. We show that several human cells express a beta-galactosidase, histochemically detectable at pH 6, upon senescence in culture. This marker was expressed by senescent, but not presenescent, fibroblasts and keratinocytes but was absent from quiescent fibroblasts and terminally differentiated keratinocytes. It was also absent from immortal cells but was induced by genetic manipulations that reversed immortality. In skin samples from human donors of different age, there was an age-dependent increase in this marker in dermal fibroblasts and epidermal keratinocytes. This marker provides in situ evidence that senescent cells may exist and accumulate with age in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several polycations possessing substantial buffering capacity below physiological pH, such as lipopolyamines and polyamidoamine polymers, are efficient transfection agents per se--i.e., without the addition of cell targeting or membrane-disruption agents. This observation led us to test the cationic polymer polyethylenimine (PEI) for its gene-delivery potential. Indeed, every third atom of PEI is a protonable amino nitrogen atom, which makes the polymeric network an effective "proton sponge" at virtually any pH. Luciferase reporter gene transfer with this polycation into a variety of cell lines and primary cells gave results comparable to, or even better than, lipopolyamines. Cytotoxicity was low and seen only at concentrations well above those required for optimal transfection. Delivery of oligonucleotides into embryonic neurons was followed by using a fluorescent probe. Virtually all neurons showed nuclear labeling, with no toxic effects. The optimal PEI cation/anion balance for in vitro transfection is only slightly on the cationic side, which is advantageous for in vivo delivery. Indeed, intracerebral luciferase gene transfer into newborn mice gave results comparable (for a given amount of DNA) to the in vitro transfection of primary rat brain endothelial cells or chicken embryonic neurons. Together, these properties make PEI a promising vector for gene therapy and an outstanding core for the design of more sophisticated devices. Our hypothesis is that its efficiency relies on extensive lysosome buffering that protects DNA from nuclease degradation, and consequent lysosomal swelling and rupture that provide an escape mechanism for the PEI/DNA particles.