11 resultados para Ponderation between the principles of efficiency and legality
em National Center for Biotechnology Information - NCBI
Resumo:
Disulfide bond formation is catalyzed in the periplasm of Escherichia coli. This process involves at least two proteins: DsbA and DsbB. Recent evidence suggests that DsbA, a soluble periplasmic protein directly catalyzes disulfide bond formation in proteins, whereas DsbB, an inner membrane protein, is involved in the reoxidation of DsbA. Here we present direct evidence of an interaction between DsbA and DsbB. (Kishigami et al. [Kishigami, S., Kanaya, E., Kikuchi, M. & Ito, K. (1995) J. Biol. Chem. 270, 17072-17074] have described similar findings.) We isolated a dominant negative mutant of dsbA, dsbAd, where Cys-33 of the DsbA active site is changed to tyrosine. Both DsbAd and DsbA are able to form a mixed disulfide with DsbB, which may be an intermediate in the reoxidation of DsbA. This complex is more stable with DsbAd. The dominance can be suppressed by increasing the production of DsbB. By using mutants of DsbB in which one or two cysteines have been changed to alanine, we show that only Cys-104 is important for complex formation. Therefore, we suggest that in vivo, reduced DsbA forms a complex with DsbB in which Cys-30 of DsbA is disulfide-bonded to Cys-104 of DsbB. Cys-104 is rapidly replaced by Cys-33 of DsbA to generate the oxidized form of this protein.
Resumo:
The genome of the pufferfish (Fugu rubripes) (400 Mb) is approximately 7.5 times smaller than the human genome, but it has a similar gene repertoire to that of man. If regions of the two genomes exhibited conservation of gene order (i.e., were syntenic), it should be possible to reduce dramatically the effort required for identification of candidate genes in human disease loci by sequencing syntenic regions of the compact Fugu genome. We have demonstrated that three genes (dihydrolipoamide succinyltransferase, S31iii125, and S20i15), which are linked to FOS in the familial Alzheimer disease focus (AD3) on human chromosome 14, have homologues in the Fugu genome adjacent to Fugu cFOS. The relative gene order of cFOS, S31iii125, and S20i15 was the same in both genomes, but in Fugu these three genes lay within a 12.4-kb region, compared to >600 kb in the human AD3 locus. These results demonstrate the conservation of synteny between the genomes of Fugu and man and highlight the utility of this approach for sequence-based identification of genes in human disease loci.
Resumo:
The poison frogs (family Dendrobatidae) are terrestrial anuran amphibians displaying a wide range of coloration and toxicity. These frogs generally have been considered to be aposematic, but relatively little research has been carried out to test the predictions of this hypothesis. Here we use a comparative approach to test one prediction of the hypothesis of aposematism: that coloration will evolve in tandem with toxicity. Recently, we developed a phylogenetic hypothesis of the evolutionary relationships among representative species of poison frogs, using sequences from three regions of mitochondrial DNA. In our analysis, we use that DNA-based phylogeny and comparative analysis of independent contrasts to investigate the correlation between coloration and toxicity in the poison frog family (Dendrobatidae). Information on the toxicity of different species was obtained from the literature. Two different measures of the brightness and extent of coloration were used. (i) Twenty-four human observers were asked to rank different photos of each different species in the analysis in terms of contrast to a leaf-littered background. (ii) Color photos of each species were scanned into a computer and a computer program was used to obtain a measure of the contrast of the colors of each species relative to a leaf-littered background. Comparative analyses of the results were carried out with two different models of character evolution: gradual change, with branch lengths proportional to the amount of genetic change, and punctuational change, with all change being associated with speciation events. Comparative analysis using either method or model indicated a significant correlation between the evolution of toxicity and coloration across this family. These results are consistent with the hypothesis that coloration in this group is aposematic.
Resumo:
A general method has been developed to analyze all 2' hydroxyl groups involved in tertiary interactions in RNA in a single experiment. This method involves comparing the activity of populations of circularly permuted RNAs that contain or lack potential hydrogen-bond donors at each position. The 2' hydroxyls of the pre-tRNA substrate identified as potential hydrogen bond donors in intermolecular interactions with the ribozyme from eubacterial RNase P (P RNA) are located in the T stem and T loop, acceptor stem, and 3' CCA regions. To locate the hydrogen-bond acceptors for one of those 2' hydroxyls in the P RNA, a phylogenetically conserved adenosine was mutated to a guanosine. When this mutant P RNA was used, increased cleavage activity of a single circularly permuted substrate within the population was observed. The cleavage efficiency (kcat/Km) of a singly 2'-deoxy-substituted substrate at this position in the T stem was also determined. For the wild-type P RNA, the catalytic efficiency was significantly decreased compared with that of the all-ribo substrate, consistent with the notion that this 2' hydroxyl plays an important role. For the P RNA mutant, no additional effect was found upon 2'-deoxy substitution. We propose that this particular 2' hydroxyl in the pre-tRNA interacts specifically with this adenosine in the P RNA. This method should be useful in examining the role of 2' hydroxyl groups in other RNA-RNA and RNA-protein complexes.
Resumo:
Modern functional neuroimaging methods, such as positron-emission tomography (PET), optical imaging of intrinsic signals, and functional MRI (fMRI) utilize activity-dependent hemodynamic changes to obtain indirect maps of the evoked electrical activity in the brain. Whereas PET and flow-sensitive MRI map cerebral blood flow (CBF) changes, optical imaging and blood oxygenation level-dependent MRI map areas with changes in the concentration of deoxygenated hemoglobin (HbR). However, the relationship between CBF and HbR during functional activation has never been tested experimentally. Therefore, we investigated this relationship by using imaging spectroscopy and laser-Doppler flowmetry techniques, simultaneously, in the visual cortex of anesthetized cats during sensory stimulation. We found that the earliest microcirculatory change was indeed an increase in HbR, whereas the CBF increase lagged by more than a second after the increase in HbR. The increased HbR was accompanied by a simultaneous increase in total hemoglobin concentration (Hbt), presumably reflecting an early blood volume increase. We found that the CBF changes lagged after Hbt changes by 1 to 2 sec throughout the response. These results support the notion of active neurovascular regulation of blood volume in the capillary bed and the existence of a delayed, passive process of capillary filling.
Resumo:
The MAL proteolipid is a nonglycosylated integral membrane protein found in glycolipid-enriched membrane microdomains. In polarized epithelial Madin-Darby canine kidney cells, MAL is necessary for normal apical transport and accurate sorting of the influenza virus hemagglutinin. MAL is thus part of the integral machinery for glycolipid-enriched membrane–mediated apical transport. At steady state, MAL is predominantly located in perinuclear vesicles that probably arise from the trans-Golgi network (TGN). To act on membrane traffic and to prevent their accumulation in the target compartment, integral membrane elements of the protein-sorting machinery should be itinerant proteins that cycle between the donor and target compartments. To establish whether MAL is an itinerant protein, we engineered the last extracellular loop of MAL by insertion of sequences containing the FLAG epitope or with sequences containing residues that became O-glycosylated within the cells or that displayed biotinylatable groups. The ectopic expression of these modified MAL proteins allowed us to investigate the surface expression of MAL and its movement through different compartments after internalization with the use of a combination of assays, including surface biotinylation, surface binding of anti-FLAG antibodies, neuraminidase sensitivity, and drug treatments. Immunofluorescence and flow cytometric analyses indicated that, in addition to its Golgi localization, MAL was also expressed on the cell surface, from which it was rapidly internalized. This retrieval implies transport through the endosomal pathway and requires endosomal acidification, because it can be inhibited by drugs such as chloroquine, monensin, and NH4Cl. Resialylation experiments of surface MAL treated with neuraminidase indicated that ∼30% of the internalized MAL molecules were delivered to the TGN, probably to start a new cycle of cargo transport. Together, these observations suggest that, as predicted for integral membrane members of the late protein transport machinery, MAL is an itinerant protein cycling between the TGN and the plasma membrane.
Resumo:
Myosin is thought to generate movement of actin filaments via a conformational change between its light-chain domain and its catalytic domain that is driven by the binding of nucleotides and actin. To monitor this change, we have measured distances between a gizzard regulatory light chain (Cys 108) and the active site (near or at Trp 130) of skeletal myosin subfragment 1 (S1) by using luminescence resonance energy transfer and a photoaffinity ATP-lanthanide analog. The technique allows relatively long distances to be measured, and the label enables site-specific attachment at the active-site with only modest affect on myosin’s enzymology. The distance between these sites is 66.8 ± 2.3 Å when the nucleotide is ADP and is unchanged on binding to actin. The distance decreases slightly with ADP-BeF3, (−1.6 ± 0.3 Å) and more significantly with ADP-AlF4 (−4.6 ± 0.2 Å). During steady-state hydrolysis of ATP, the distance is temperature-dependent, becoming shorter as temperature increases and the complex with ADP⋅Pi is favored over that with ATP. We conclude that the distance between the active site and the light chain varies as Acto-S1-ADP ≈ S1-ADP > S1-ADP-BeF3 > S1-ADP-AlF4 ≈ S1-ADP-Pi and that S1-ATP > S1-ADP-Pi. The changes in distance are consistent with a substantial rotation of the light-chain binding domain of skeletal S1 between the prepowerstroke state, simulated by S1-ADP-AlF4, and the post-powerstroke state, simulated by acto-S1-ADP.
Resumo:
The food system dominates anthropogenic disruption of the nitrogen cycle by generating excess fixed nitrogen. Excess fixed nitrogen, in various guises, augments the greenhouse effect, diminishes stratospheric ozone, promotes smog, contaminates drinking water, acidifies rain, eutrophies bays and estuaries, and stresses ecosystems. Yet, to date, regulatory efforts to limit these disruptions largely ignore the food system. There are many parallels between food and energy. Food is to nitrogen as energy is to carbon. Nitrogen fertilizer is analogous to fossil fuel. Organic agriculture and agricultural biotechnology play roles analogous to renewable energy and nuclear power in political discourse. Nutrition research resembles energy end-use analysis. Meat is the electricity of food. As the agriculture and food system evolves to contain its impacts on the nitrogen cycle, several lessons can be extracted from energy and carbon: (i) set the goal of ecosystem stabilization; (ii) search the entire production and consumption system (grain, livestock, food distribution, and diet) for opportunities to improve efficiency; (iii) implement cap-and-trade systems for fixed nitrogen; (iv) expand research at the intersection of agriculture and ecology, and (v) focus on the food choices of the prosperous. There are important nitrogen-carbon links. The global increase in fixed nitrogen may be fertilizing the Earth, transferring significant amounts of carbon from the atmosphere to the biosphere, and mitigating global warming. A modern biofuels industry someday may produce biofuels from crop residues or dedicated energy crops, reducing the rate of fossil fuel use, while losses of nitrogen and other nutrients are minimized.
Resumo:
Bombesin (BN) acts as an autocrine mitogen in various human cancers. Several pseudononapeptide BN-(6-14) analogs with a reduced peptide bond between positions 13 and 14 have been shown to suppress the mitogenic activity of BN or gastrin-releasing peptide (GRP) when assessed by radioreceptor or proliferation assays and may have significant clinical applications. The search for potent and safe BN antagonists requires the evaluation of a large series of analogs in radioreceptor and proliferation assays. In this paper, we report that the ability of BN analogs to inhibit BN-induced calcium transients in Swiss 3T3 cells shows a high correlation with their inhibitory potency as evaluated by classical proliferation tests. The assay of calcium transients allows a rapid characterization of new BN analogs (in terms of minutes rather than days) and can be adapted as a labor and cost-effective screening step in the selection of potentially relevant BN antagonists for further characterization in cell proliferation systems. We also observed that results from the assay of calcium transients in Swiss 3T3 cells can be correlated with the results of the proliferative response in HT-29 cells, a cell line that does not seem to use the same early transmembrane ionic signal system. This result suggests that the calcium pathway is not mandatory for triggering cell division by the BN receptor.
Resumo:
The retinoid X receptor (RXR) participates in a wide array of hormonal signaling pathways, either as a homodimer or as a heterodimer, with other members of the steroid and thyroid hormone receptor superfamily. In this report the ligand-dependent transactivation function of RXR has been characterized, and the ability of RXR to interact with components of the basal transcription machinery has been examined. In vivo and in vitro experiments indicate the RXR ligand-binding domain makes a direct, specific, and ligand-dependent contact with a highly conserved region of the TATA-binding protein. The ability of mutations that reduce ligand-dependent transcription by RXR to disrupt the RXR-TATA-binding protein interaction in vivo and in vitro suggests that RXR makes direct contact with the basal transcription machinery to achieve activation.