8 resultados para Polyploidy
em National Center for Biotechnology Information - NCBI
Resumo:
Of the many processes that generate gene duplications, polyploidy is unique in that entire genomes are duplicated. This process has been important in the evolution of many eukaryotic groups, and it occurs with high frequency in plants. Recent evidence suggests that polyploidization may be accompanied by rapid genomic changes, but the evolutionary fate of discrete loci recently doubled by polyploidy (homoeologues) has not been studied. Here we use locus-specific isolation techniques with comparative mapping to characterize the evolution of homoeologous loci in allopolyploid cotton (Gossypium hirsutum) and in species representing its diploid progenitors. We isolated and sequenced 16 loci from both genomes of the allopolyploid, from both progenitor diploid genomes and appropriate outgroups. Phylogenetic analysis of the resulting 73.5 kb of sequence data demonstrated that for all 16 loci (14.7 kb/genome), the topology expected from organismal history was recovered. In contrast to observations involving repetitive DNAs in cotton, there was no evidence of interaction among duplicated genes in the allopolyploid. Polyploidy was not accompanied by an obvious increase in mutations indicative of pseudogene formation. Additionally, differences in rates of divergence among homoeologues in polyploids and orthologues in diploids were indistinguishable across loci, with significant rate deviation restricted to two putative pseudogenes. Our results indicate that most duplicated genes in allopolyploid cotton evolve independently of each other and at the same rate as those of their diploid progenitors. These indications of genic stasis accompanying polyploidization provide a sharp contrast to recent examples of rapid genomic evolution in allopolyploids.
Resumo:
Retinoid X receptors (RXRs) are involved in a number of signaling pathways as heterodimeric partners of numerous nuclear receptors. Hepatocytes express high levels of the RXRα isotype, as well as several of its putative heterodimeric partners. Germ-line disruption (knockout) of RXRα has been shown to be lethal in utero, thus precluding analysis of its function at later life stages. Hepatocyte-specific disruption of RXRα during liver organogenesis has recently revealed that the presence of hepatocytes is not mandatory for the mouse, at least under normal mouse facility conditions, even though a number of metabolic events are impaired [Wan, Y.-J., et al. (2000) Mol. Cell. Biol. 20, 4436–4444]. However, it is unknown whether RXRα plays a role in the control of hepatocyte proliferation and lifespan. Here, we report a detailed analysis of the liver of mice in which RXRα was selectively ablated in adult hepatocytes by using the tamoxifen-inducible chimeric Cre recombinase system. Our results show that the lifespan of adult hepatocytes lacking RXRα is shorter than that of their wild-type counterparts, whereas proliferative hepatocytes of regenerating liver exhibit an even shorter lifespan. These lifespan shortenings are accompanied by increased polyploidy and multinuclearity. We conclude that RXRα plays important cell-autonomous function(s) in the mechanism(s) involved in the lifespan of hepatocytes and liver regeneration.
Resumo:
In 1950, G. Ledyard Stebbins devoted two chapters of his book Variation and Evolution in Plants (Columbia Univ. Press, New York) to polyploidy, one on occurrence and nature and one on distribution and significance. Fifty years later, many of the questions Stebbins posed have not been answered, and many new questions have arisen. In this paper, we review some of the genetic attributes of polyploids that have been suggested to account for the tremendous success of polyploid plants. Based on a limited number of studies, we conclude: (i) Polyploids, both individuals and populations, generally maintain higher levels of heterozygosity than do their diploid progenitors. (ii) Polyploids exhibit less inbreeding depression than do their diploid parents and can therefore tolerate higher levels of selfing; polyploid ferns indeed have higher levels of selfing than do their diploid parents, but polyploid angiosperms do not differ in outcrossing rates from their diploid parents. (iii) Most polyploid species are polyphyletic, having formed recurrently from genetically different diploid parents. This mode of formation incorporates genetic diversity from multiple progenitor populations into the polyploid “species”; thus, genetic diversity in polyploid species is much higher than expected by models of polyploid formation involving a single origin. (iv) Genome rearrangement may be a common attribute of polyploids, based on evidence from genome in situ hybridization (GISH), restriction fragment length polymorphism (RFLP) analysis, and chromosome mapping. (v) Several groups of plants may be ancient polyploids, with large regions of homologous DNA. These duplicated genes and genomes can undergo divergent evolution and evolve new functions. These genetic and genomic attributes of polyploids may have both biochemical and ecological benefits that contribute to the success of polyploids in nature.
Resumo:
We used digital fluorescence microscopy to make real-time observations of anaphase chromosome movement and changes in microtubule organization in spindles assembled in Xenopus egg extracts. Anaphase chromosome movement in these extracts resembled that seen in living vertebrate cells. During anaphase chromosomes moved toward the spindle poles (anaphase A) and the majority reached positions very close to the spindle poles. The average rate of chromosome to pole movement (2.4 microns/min) was similar to earlier measurements of poleward microtubule flux during metaphase. An increase in pole-to-pole distance (anaphase B) occurred in some spindles. The polyploidy of the spindles we examined allowed us to observe two novel features of mitosis. First, during anaphase, multiple microtubule organizing centers migrated 40 microns or more away from the spindle poles. Second, in telophase, decondensing chromosomes often moved rapidly (7-23 microns/min) away from the spindle poles toward the centers of these asters. This telophase chromosome movement suggests that the surface of decondensing chromosomes, and by extension those of intact nuclei, bear minus-end-directed microtubule motors. Preventing the inactivation of Cdc2/cyclin B complexes by adding nondegradable cyclin B allowed anaphase A to occur at normal velocities, but reduced the ejection of asters from the spindles, blocked chromosome decondensation, and inhibited telophase chromosome movement. In the presence of nondegradable cyclin B, chromosome movement to the poles converted bipolar spindles into pairs of independent monopolar spindles, demonstrating the role of sister chromatid linkage in maintaining spindle bipolarity.
Resumo:
A silent transgene in Arabidopsis thaliana was reactivated in an outcross but not upon selfing of hemizygous plants. This result could only be explained by assuming a genetic difference between the transgene-free gametes of the wild-type and hemizygous transgenic plants, respectively, and led to the discovery of ploidy differences between the parental plants. To investigate whether a change of ploidy by itself can indeed influence gene expression, we performed crosses of diploid or tetraploid plants with a strain containing a single copy of a transgenic resistance gene in an active state. We observed reduced gene expression of the transgene in triploid compared with diploid hybrids. This led to loss of the resistant phenotype at various stages of seedling development in part of the population. The gene inactivation was reversible. Thus, an increased number of chromosomes can result in a new type of epigenetic gene inactivation, creating differences in gene expression patterns. We discuss the possible impact of this finding for genetic diploidization in the light of widespread, naturally occurring polyploidy and polysomaty in plants.
Resumo:
Natural hybridization is a relatively common feature of vascular plant species and has been demonstrated to have played an important role in their evolution. Nonetheless, it is not clear whether spontaneous hybridization occurs as a general feature of all plant families and genera or whether certain groups are especially prone to spontaneous hybridization. Therefore, we inspected five modern biosystematic floras to survey the frequency and taxonomic distribution of spontaneous hybrids. We found spontaneous hybridization to be nonrandomly distributed among taxa, concentrated in certain families and certain genera, often at a frequency out of proportion to the size of the family or genus. Most of these groups were primarily outcrossing perennials with reproductive modes that stabilized hybridity such as agamospermy, vegetative spread, or permanent odd polyploidy. These data suggest that certain phylogenetic groups are biologically predisposed for the formation and maintenance of hybrids.
Resumo:
The hemagglutination inhibition antibody titers against the JC and BK polyoma viruses (JCV and BKV, respectively) are significantly elevated in individuals exhibiting "rogue" cells among their cultured lymphocytes. However, the elevation is so much greater with respect to JCV that the BKV elevation could readily be explained by cross reactivity to the capsid protein of these two closely related viruses. The JCV exhibits high sequence homology with the simian papovavirus, simian virus 40 (SV40), and inoculation of human fetal brain cells with JCV produces polyploidy and chromosomal damage very similar to that produced by SV40. We suggest, by analogy with the effects of SV40, that these changes are due to the action of the viral large tumor antigen, a pluripotent DNA binding protein that acts in both transcription and replication. The implications of these findings for oncogenesis are briefly discussed.
Resumo:
Although the evolutionary success of polyploidy in higher plants has been widely recognized, there is virtually no information on how polyploid genomes have evolved after their formation. In this report, we used synthetic polyploids of Brassica as a model system to study genome evolution in the early generations after polyploidization. The initial polyploids we developed were completely homozygous, and thus, no nuclear genome changes were expected in self-fertilized progenies. However, extensive genome change was detected by 89 nuclear DNA clones used as probes. Most genome changes involved loss and/or gain of parental restriction fragments and appearance of novel fragments. Genome changes occurred in each generation from F2 to F5, and the frequency of change was associated with divergence of the diploid parental genomes. Genetic divergence among the derivatives of synthetic polyploids was evident from variation in genome composition and phenotypes. Directional genome changes, possibly influenced by cytoplasmic-nuclear interactions, were observed in one pair of reciprocal synthetics. Our results demonstrate that polyploid species can generate extensive genetic diversity in a short period of time. The occurrence and impact of this process in the evolution of natural polyploids is unknown, but it may have contributed to the success and diversification of many polyploid lineages in both plants and animals.