2 resultados para Polyester urethane

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alcaligenes eutrophus genes encoding the enzymes, β-ketothiolase (phaA), acetoacetyl-CoA reductase (phaB), and polyhydroxyalkanoate synthase (phaC) catalyze the production of aliphatic polyester poly-d-(−)-3-hydroxybutyrate (PHB) from acetyl-CoA. PHB is a thermoplastic polymer that may modify fiber properties when synthesized in cotton. Endogenous β-ketothiolase activity is present in cotton fibers. Hence cotton was transformed with engineered phaB and phaC genes by particle bombardment, and transgenic plants were selected based on marker gene, β-glucuronidase (GUS), expression. Fibers of 10 transgenic plants expressed phaB gene, while eight plants expressed both phaB and phaC genes. Electron microscopy examination of fibers expressing both genes indicated the presence of electron-lucent granules in the cytoplasm. High pressure liquid chromatography, gas chromatography, and mass spectrometry evidence suggested that the new polymer produced in transgenic fibers is PHB. Sixty-six percent of the PHB in fibers is in the molecular mass range of 0.6 × 106 to 1.8 × 106 Da. The presence of PHB granules in transgenic fibers resulted in measurable changes of thermal properties. The fibers exhibited better insulating characteristics. The rate of heat uptake and cooling was slower in transgenic fibers, resulting in higher heat capacity. These data show that metabolic pathway engineering in cotton may enhance fiber properties by incorporating new traits from other genetic sources. This is an important step toward producing new generation fibers for the textile industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of cell toxicity are known to be inherent in carcinogenesis induced by radiation or chemical carcinogens. The event of cell death precludes tumor induction from occurring. A long standing problem is to estimate the proportion of initiated cells that die before tumor induction. No experimental techniques are currently available for directly gauging the rate of cell death over extended periods of time. The obstacle can be surmounted by newly developed theoretical methods of carcinogenesis modeling. In this paper, we apply such methods to published data on multiple lung tumors in mice receiving different schedules of urethane. Bioassays of this type play an important role in testing environmental chemicals for carcinogenic activity. Our estimates for urethane-induced carcinogenesis show that, unexpectedly, many initiated cells die early in the course of tumor promotion. We present numerical estimates for the probability of initiated cell death for different schedules (and doses) of urethane administration.