3 resultados para Polyacrylic acid polymer
em National Center for Biotechnology Information - NCBI
Resumo:
Damage to peripheral nerves often cannot be repaired by the juxtaposition of the severed nerve ends. Surgeons have typically used autologous nerve grafts, which have several drawbacks including the need for multiple surgical procedures and loss of function at the donor site. As an alternative, the use of nerve guidance channels to bridge the gap between severed nerve ends is being explored. In this paper, the electrically conductive polymer—oxidized polypyrrole (PP)—has been evaluated for use as a substrate to enhance nerve cell interactions in culture as a first step toward potentially using such polymers to stimulate in vivo nerve regeneration. Image analysis demonstrates that PC-12 cells and primary chicken sciatic nerve explants attached and extended neurites equally well on both PP films and tissue culture polystyrene in the absence of electrical stimulation. In contrast, PC-12 cells interacted poorly with indium tin oxide (ITO), poly(l-lactic acid) (PLA), and poly(lactic acid-co-glycolic acid) surfaces. However, PC-12 cells cultured on PP films and subjected to an electrical stimulus through the film showed a significant increase in neurite lengths compared with ones that were not subjected to electrical stimulation through the film and tissue culture polystyrene controls. The median neurite length for PC-12 cells grown on PP and subjected to an electrical stimulus was 18.14 μm (n = 5643) compared with 9.5 μm (n = 4440) for controls. Furthermore, animal implantation studies reveal that PP invokes little adverse tissue response compared with poly(lactic acid-co-glycolic acid).
Resumo:
Natural ribozymes require metal ion cofactors that aid both in structural folding and in chemical catalysis. In contrast, many protein enzymes produce dramatic rate enhancements using only the chemical groups that are supplied by their constituent amino acids. This fact is widely viewed as the most important feature that makes protein a superior polymer for the construction of biological catalysts. Herein we report the in vitro selection of a catalytic DNA that uses histidine as an active component for an RNA cleavage reaction. An optimized deoxyribozyme from this selection requires l-histidine or a closely related analog to catalyze RNA phosphoester cleavage, producing a rate enhancement of ≈1-million-fold over the rate of substrate cleavage in the absence of enzyme. Kinetic analysis indicates that a DNA–histidine complex may perform a reaction that is analogous to the first step of the proposed catalytic mechanism of RNase A, in which the imidazole group of histidine serves as a general base catalyst. Similarly, ribozymes of the “RNA world” may have used amino acids and other small organic cofactors to expand their otherwise limited catalytic potential.
Resumo:
Four oligofructans (neokestose, 1-kestose, nystose, and an un-identified pentofructan) occurred in the vascular tissues and phloem sap of mature leaves of Agave deserti. Fructosyltransferases (responsible for fructan biosynthesis) also occurred in the vascular tissues. In contrast, oligofructans and fructosyltransferases were virtually absent from the chlorenchyma, suggesting that fructan biosynthesis was restricted to the vascular tissues. On a molar basis, these oligofructans accounted for 46% of the total soluble sugars in the vascular tissues (sucrose [Suc] for 26%) and for 19% in the phloem sap (fructose for 24% and Suc for 53%). The Suc concentration was 1.8 times higher in the cytosol of the chlorenchyma cells than in the phloem sap; the nystose concentration was 4.9 times higher and that of pentofructan was 3.2 times higher in the vascular tissues than in the phloem sap. To our knowledge, these results provide the first evidence that oligofructans are synthesized and transported in the phloem of higher plants. The polymer-trapping mechanism proposed for dicotyledonous C3 species may also be valid for oligofructan transport in monocotyledonous species, such as A. deserti, which may use a symplastic pathway for phloem loading of photosynthates in its mature leaves.