4 resultados para Poliesteri alifatici, Biocompatibilità, Controlled drug release, Biodegradabilità

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiac arrhythmias are a frequent cause of death and morbidity. Conventional antiarrhythmia therapy involving oral or intravenous medication is often ineffective and complicated by drug-associated side effects. Previous studies from our laboratory have demonstrated the advantages of cardiac drug-polymer implants for enhanced efficacy for cardiac arrhythmia therapy compared with conventional administration. However, these studies were based on systems that deliver drugs at a fixed release rate. Modulation of the drug delivery rate has the advantage of regulating the amount of the drug delivered depending upon the disease state of the patient. We hypothesized that iontophoresis could be used to modulate cardiac drug delivery. In this study, we report our investigations of a cardiac drug implant in dogs that is capable of iontophoretic modulation of the administration of the antiarrhythmic agent sotalol. We used a heterogeneous cation-exchange membrane (HCM) as an electrically sensitive and highly efficient rate-limiting barrier on the cardiac-contacting surface of the implant. Thus, electric current is passed only through the HCM and not the myocardium. The iontophoretic cardiac implant demonstrated in vitro drug release rates that were responsive to current modulation. In vivo results in dogs have confirmed that iontophoresis resulted in regional coronary enhancement of sotalol levels with current-responsive increases in drug concentrations. We also observed acute current-dependent changes in ventricular effective refractory periods reflecting sotalol-induced refractoriness due to regional drug administration. In 30-day dog experiments, iontophoretic cardiac implants demonstrated robust sustained function and reproducible modulation of drug delivery kinetics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The exact role of the pfmdr1 gene in the emergence of drug resistance in the malarial parasite Plasmodium falciparum remains controversial. pfmdr1 is a member of the ATP binding cassette (ABC) superfamily of transporters that includes the mammalian P-glycoprotein family. We have introduced wild-type and mutant variants of the pfmdr1 gene in the yeast Saccharomyces cerevisiae and have analyzed the effect of pfmdr1 expression on cellular resistance to quinoline-containing antimalarial drugs. Yeast transformants expressing either wild-type or a mutant variant of mouse P-glycoprotein were also analyzed. Dose-response studies showed that expression of wild-type pfmdr1 causes cellular resistance to quinine, quinacrine, mefloquine, and halofantrine in yeast cells. Using quinacrine as substrate, we observed that increased resistance to this drug in pfmdr1 transformants was associated with decreased cellular accumulation and a concomitant increase in drug release from preloaded cells. The introduction of amino acid polymorphisms in TM11 of Pgh-1 (pfmdr1 product) associated with drug resistance in certain field isolates of P. falciparum abolished the capacity of this protein to confer drug resistance. Thus, these findings suggest that Pgh-1 may act as a drug transporter in a manner similar to mammalian P-glycoprotein and that sequence variants associated with drug-resistance pfmdr1 alleles behave as loss of function mutations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The dopamine hypothesis of schizophrenia proposes that hyperactivity of dopaminergic transmission is associated with this illness, but direct observation of abnormalities of dopamine function in schizophrenia has remained elusive. We used a newly developed single photon emission computerized tomography method to measure amphetamine-induced dopamine release in the striatum of fifteen patients with schizophrenia and fifteen healthy controls. Amphetamine-induced dopamine release was estimated by the amphetamine-induced reduction in dopamine D2 receptor availability, measured as the binding potential of the specific D2 receptor radiotracer [123I] (S)-(-)-3-iodo-2-hydroxy-6-methoxy-N-[(1-ethyl-2-pyrrolidinyl) methyl]benzamide ([123I]IBZM). The amphetamine-induced decrease in [123I]IBZM binding potential was significantly greater in the schizophrenic group (-19.5 +/- 4.1%) compared with the control group (-7.6 +/- 2.1%). In the schizophrenic group, elevated amphetamine effect on [123I]IBZM binding potential was associated with emergence or worsening of positive psychotic symptoms. This result suggests that psychotic symptoms elicited in this experimental setting in schizophrenic patients are associated with exaggerated stimulation of dopaminergic transmission. Such an observation would be compatible with an abnormal responsiveness of dopaminergic neurons in schizophrenia.