6 resultados para Plug Flow With Axial Dispersion Model

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alternative models of cell mechanics depict the living cell as a simple mechanical continuum, porous filament gel, tensed cortical membrane, or tensegrity network that maintains a stabilizing prestress through incorporation of discrete structural elements that bear compression. Real-time microscopic analysis of cells containing GFP-labeled microtubules and associated mitochondria revealed that living cells behave like discrete structures composed of an interconnected network of actin microfilaments and microtubules when mechanical stresses are applied to cell surface integrin receptors. Quantitation of cell tractional forces and cellular prestress by using traction force microscopy confirmed that microtubules bear compression and are responsible for a significant portion of the cytoskeletal prestress that determines cell shape stability under conditions in which myosin light chain phosphorylation and intracellular calcium remained unchanged. Quantitative measurements of both static and dynamic mechanical behaviors in cells also were consistent with specific a priori predictions of the tensegrity model. These findings suggest that tensegrity represents a unified model of cell mechanics that may help to explain how mechanical behaviors emerge through collective interactions among different cytoskeletal filaments and extracellular adhesions in living cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary events in the all-trans to 13-cis photoisomerization of retinal in bacteriorhodopsin have been investigated with femtosecond time-resolved absorbance spectroscopy. Spectra measured over a broad range extending from 7000 to 22,400 cm−1 reveal features whose dynamics are inconsistent with a model proposed earlier to account for the highly efficient photoisomerization process. Emerging from this work is a new three-state model. Photoexcitation of retinal with visible light accesses a shallow well on the excited state potential energy surface. This well is bounded by a small barrier, arising from an avoided crossing that separates the Franck–Condon region from the nearby reactive region of the photoisomerization coordinate. At ambient temperatures, the reactive region is accessed with a time constant of ≈500 fs, whereupon the retinal rapidly twists and encounters a second avoided crossing region. The protein mediates the passage into the second avoided crossing region and thereby exerts control over the quantum yield for forming 13-cis retinal. The driving force for photoisomerization resides in the retinal, not in the surrounding protein. This view contrasts with an earlier model where photoexcitation was thought to access directly a reactive region of the excited-state potential and thereby drive the retinal to a twisted conformation within 100–200 fs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Positron emission tomography studies were conducted during genesis of moderate thirst by rapid i.v. infusion of hypertonic saline (0.51 M) and after satiation of thirst by drinking water. The correlation of regional cerebral blood flow with the change in the plasma Na concentration showed a significant group of cerebral activations in the anterior cingulate region and also a site in the middle temporal gyrus and in the periaqueductal gray. Strongest deactivations occurred in the parahippocampal and frontal gyri. The data are consistent with an important role of the anterior cingulate in the genesis of thirst.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In self-processing biochemical reactions, a protein or RNA molecule specifically modifies its own structure. Many such reactions are regulated in response to the needs of the cell by an interaction with another effector molecule. In the system we study here, specific cleavage of the Escherichia coli LexA repressor, LexA cleaves itself in vitro at a slow rate, but in vivo cleavage requires interaction with an activated form of RecA protein. RecA acts indirectly as a coprotease to stimulate LexA autodigestion. We describe here a new class of lexA mutants, lexA (Adg-; for autodigestion-defective) mutants, termed Adg- for brevity. Adg- mutants specifically interfered with the ability of LexA to autodigest but left intact its ability to undergo RecA-mediated cleavage. The data are consistent with a conformational model in which RecA favors a reactive conformation capable of undergoing cleavage. To our knowledge, this is the first example of a mutation in a regulated self-processing reaction that impairs the rate of self-processing without markedly affecting the stimulated reaction. Had wild-type lexA carried such a substitution, discovery of its self-processing would have been difficult; we suggest that, in other systems, a slow rate of self-processing has prevented recognition that a reaction is of this nature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Zn(Scys)4 unit is present in numerous proteins, where it assumes structural, regulatory, or catalytic roles. The same coordination is found naturally around iron in rubredoxins, several structures of which have been refined at resolutions of, or near to, 1 A. The fold of the small protein rubredoxin around its metal ion is an excellent model for many zinc finger proteins. Zn-substituted rubredoxin and its Fe-containing counterpart were both obtained as the products of the expression in Escherichia coli of the rubredoxin-encoding gene from Clostridium pasteurianum. The structures of both proteins have been refined with an anisotropic model at atomic resolution (1.1 A, R = 8.3% for Fe-rubredoxin, and 1.2 A, R = 9.6% for Zn-rubredoxin) and are very similar. The most significant differences are increased lengths of the M-S bonds in Zn-rubredoxin (average length, 2.345 A) as compared with Fe-rubredoxin (average length, 2.262 A). An increase of the CA-CB-SG-M dihedral angles involving Cys-6 and Cys-39, the first cysteines of each of the Cys-Xaa-Xaa-Cys metal binding motifs, has been observed. Another consequence of the replacement of iron by zinc is that the region around residues 36-46 undergoes larger displacements than the remainder of the polypeptide chain. Despite these changes, the main features of the FeS4 site, namely a local 2-fold symmetry and the characteristic network of N-H...S hydrogen bonds, are conserved in the ZnS4 site. The Zn-substituted rubredoxin provides the first precise structure of a Zn(Scys)4 unit in a protein. The nearly identical fold of rubredoxin around iron or zinc suggests that at least in some of the sites where the metal has mainly a structural role-e.g., zinc fingers-the choice of the relevant metal may be directed by its cellular availability and mobilization processes rather than by its chemical nature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Theoretical advantages of nonparametric logarithm of odds to map polygenic diseases are supported by tests of the beta model that depends on a single logistic parameter and is the only model under which paternal and maternal transmissions to sibs of specified phenotypes are independent. Although it does not precisely describe recurrence risks in monozygous twins, the beta model has greater power to detect family resemblance or linkage than the more general delta model which describes the probability of 0, 1, or 2 alleles identical by descent (ibd) with two parameters. Available data on ibd in sibs are consistent with the beta model, but not with the equally parsimonious but less powerful gamma model that assumes a fixed probability of 1/2 for 1 allele ibd. Additivity of loci on the liability scale is not disproven. A simple equivalence extends the beta model to multipoint analysis.