3 resultados para Pleistocene fossil reefs
em National Center for Biotechnology Information - NCBI
Resumo:
The study of life history evolution in hominids is crucial for the discernment of when and why humans have acquired our unique maturational pattern. Because the development of dentition is critically integrated into the life cycle in mammals, the determination of the time and pattern of dental development represents an appropriate method to infer changes in life history variables that occurred during hominid evolution. Here we present evidence derived from Lower Pleistocene human fossil remains recovered from the TD6 level (Aurora stratum) of the Gran Dolina site in the Sierra de Atapuerca, northern Spain. These hominids present a pattern of development similar to that of Homo sapiens, although some aspects (e.g., delayed M3 calcification) are not as derived as that of European populations and people of European origin. This evidence, taken together with the present knowledge of cranial capacity of these and other late Early Pleistocene hominids, supports the view that as early as 0.8 Ma at least one Homo species shared with modern humans a prolonged pattern of maturation.
Resumo:
New accelerator mass spectrometry radiocarbon dates taken directly on human remains from the Late Pleistocene sites of Vindija and Velika Pećina in the Hrvatsko Zagorje of Croatia are presented. Hominid specimens from both sites have played critical roles in the development of current perspectives on modern human evolutionary emergence in Europe. Dates of ≈28 thousand years (ka) before the present (B.P.) and ≈29 ka B.P. for two specimens from Vindija G1 establish them as the most recent dated Neandertals in the Eurasian range of these archaic humans. The human frontal bone from Velika Pećina, generally considered one of the earliest representatives of modern humans in Europe, dated to ≈5 ka B.P., rendering it no longer pertinent to discussions of modern human origins. Apart from invalidating the only radiometrically based example of temporal overlap between late Neandertal and early modern human fossil remains from within any region of Europe, these dates raise the question of when early modern humans first dispersed into Europe and have implications for the nature and geographic patterning of biological and cultural interactions between these populations and the Neandertals.
Resumo:
Coral reefs, with their millions of species, have changed profoundly because of the effects of people, and will continue to do so for the foreseeable future. Reefs are subject to many of the same processes that affect other human-dominated ecosystems, but some special features merit emphasis: (i) Many dominant reef builders spawn eggs and sperm into the water column, where fertilization occurs. They are thus particularly vulnerable to Allee effects, including potential extinction associated with chronic reproductive failure. (ii) The corals likely to be most resistant to the effects of habitat degradation are small, short-lived “weedy” corals that have limited dispersal capabilities at the larval stage. Habitat degradation, together with habitat fragmentation, will therefore lead to the establishment of genetically isolated clusters of inbreeding corals. (iii) Increases in average sea temperatures by as little as 1°C, a likely result of global climate change, can cause coral “bleaching” (the breakdown of coral–algal symbiosis), changes in symbiont communities, and coral death. (iv) The activities of people near reefs increase both fishing pressure and nutrient inputs. In general, these processes favor more rapidly growing competitors, often fleshy seaweeds, and may also result in explosions of predator populations. (v) Combinations of stress appear to be associated with threshold responses and ecological surprises, including devastating pathogen outbreaks. (vi) The fossil record suggests that corals as a group are more likely to suffer extinctions than some of the groups that associate with them, whose habitat requirements may be less stringent.