56 resultados para Play. School. Metropolitan region of Natal
em National Center for Biotechnology Information - NCBI
Resumo:
Tumor necrosis factor α (TNFα) acts as a beneficial mediator in the process of host defence. In recent years major interest has focused on the AU-rich elements (AREs) present in the 3′-untranslated region (3′-UTR) of TNFα mRNA as this region plays a pivotal role in post-transcriptional control of TNFα production. Certain stimuli, such as lipopolysaccharides, a component of the Gram-negative bacterial cell wall, have the ability to relinquish the translational suppression of TNFα mRNA imposed by these AREs in macrophages, thereby enabling the efficient production of the TNFα. In this study we show that the polymorphism (GAU trinucleotide insertional mutation) present in the regulatory 3′-UTR of TNFα mRNA of NZW mice results in the hindered binding of RNA-binding proteins, thereby leading to a significantly reduced production of TNFα protein. We also show that the binding of macrophage proteins to the main ARE is also decreased by another trinucleotide (CAU) insertion in the TNFα 3′-UTR. One of the proteins affected by the GAU trinucleotide insertional mutation was identified as HuR, a nucleo-cytoplasmic shuttling protein previously shown to play a prominent role in the stability and translatability of mRNA containing AREs. Since binding of this protein most likely modulates the stability, translational efficiency and transport of TNFα mRNA, these results suggest that mutations in the ARE of TNFα mRNA decrease the production of TNFα protein in macrophages by hindering the binding of HuR to the ARE.
Resumo:
Transcription from the middle promoter, Pm, of phage Mu is initiated by Escherichia coli RNA polymerase holoenzyme (E sigma 70; RNAP) and the phage-encoded activator, Mor. Point mutations in the spacer region between the -10 hexamer and the Mor binding site result in changes of promoter activity in vivo. These mutations are located at the junction between a rigid T-tract and adjacent, potentially deformable G + C-rich DNA segment, suggesting that deformation of the spacer region may play a role in the transcriptional activation of Pm. This prediction was tested by using dimethyl sulfate and potassium permanganate footprinting analyses. Helical distortion involving strand separation was detected at positions -32 to -34, close to the predicted interface between Mor and RNAP. Promoter mutants in which this distortion was not detected exhibited a lack of melting in the -12 to -1 region and reduced promoter activity in vivo. We propose that complexes containing the distortion represent stressed intermediates rather than stable open complexes and thus can be envisaged as a transition state in the kinetic pathway of Pm activation in which stored torsional energy could be used to facilitate melting around the transcription start point.
Resumo:
The major histocompatibility complex class II genes play an important role in the genetic predisposition to many autoimmune diseases. In the case of rheumatoid arthritis (RA), the human leukocyte antigen (HLA)-DRB1 locus has been implicated in the disease predisposition. The "shared epitope" hypothesis predicts that similar motifs within the third hypervariable (HV3) regions of some HLA-DRB1 alleles are responsible for the class II-associated predisposition to RA. Using a line of transgenic mice expressing the DQB1*0302/DQA1*0301 (DQ8) genes in the absence of endogenous mouse class II molecules, we have analyzed the antigenicity of peptides covering the HV3 regions of RA-associated and nonassociated DRB1 molecules. Our results show that a correlation exists between proliferative response to peptides derived from the HV3 regions of DRB1 chains and nonassociation of the corresponding alleles with RA predisposition. While HV3 peptides derived from nonassociated DRB1 molecules are highly immunogenic in DQ8 transgenic mice, all the HV3 peptides derived from RA-associated DRB1 alleles fail to induce a DQ8-restricted T-cell response. These data suggest that the role of the "shared epitope" in RA predisposition may be through the shaping of the T-cell repertoire.
Resumo:
At high concentrations, the tubule poison paclitaxel is able to kill cancer cells that express Bcl-2; it inhibits the antiapoptotic activity of Bcl-2 by inducing its phosphorylation. To localize the site on Bcl-2 regulated by phosphorylation, mutant forms of Bcl-2 were constructed. Mutant forms of Bcl-2 with an alteration in serine at amino acid 70 (S70A) or with deletion of a 60-aa loop region between the α1 and α2 helices (Δloop Bcl-2, which also deletes amino acid 70) were unable to be phosphorylated by paclitaxel treatment of MDA-MB-231 cells into which the genes for the mutant proteins were transfected. The Δloop mutant completely inhibited paclitaxel-induced apoptosis. In cells expressing the S70A mutant, paclitaxel induced about one-third the level of apoptosis seen with wild-type Bcl-2. To evaluate the role of mitogen-activated protein kinases (MAPKs) in Bcl-2 phosphorylation, the activation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 was examined. Paclitaxel-induced apoptosis was associated with phosphorylation of Bcl-2 and activation of ERK and JNK MAPKs. If JNK activation was blocked by transfections with either a stress-activated protein kinase kinase dominant-negative (K→R) gene (which prevents the activation of a kinase upstream of JNK) or MAPK phosphatase-1 gene (which dephosphorylates and inactivates JNK), Bcl-2 phosphorylation did not occur, and the cells were not killed by paclitaxel. By contrast, neither an ERK inhibitor (PD098059) nor p38 inhibitors (SB203580 and SB202190) had an effect on Bcl-2 phosphorylation. Thus, our data show that the antiapoptotic effects of Bcl-2 can be overcome by phosphorylation of Ser-70; forms of Bcl-2 lacking the loop region are much more effective at preventing apoptosis than wild-type Bcl-2 because they cannot be phosphorylated. JNK, but not ERK or p38 MAPK, appear to be involved in the phosphorylation of Bcl-2 induced by paclitaxel.
Resumo:
Imprinted genes tend to occur in clusters. We have identified a cluster in distal mouse chromosome (Chr) 2, known from early genetic studies to contain both maternally and paternally imprinted, but unspecified, genes. Subsequently, one was identified as Gnas, which encodes a G protein α subunit, and there is clinical and biochemical evidence that the human homologue GNAS1, mutated in patients with Albright hereditary osteodystrophy, is also imprinted. We have used representational difference analysis, based on parent-of-origin methylation differences, to isolate candidate imprinted genes in distal Chr 2 and found two oppositely imprinted genes, Gnasxl and Nesp. Gnasxl determines a variant G protein α subunit associated with the trans-Golgi network and Nesp encodes a secreted protein of neuroendocrine tissues. Gnasxl is maternally methylated in genomic DNA and encodes a paternal-specific transcript, whereas Nesp is paternally methylated with maternal-specific expression. Their reciprocal imprinting may offer insight into the distal Chr 2 imprinting phenotypes. Remarkably, Gnasxl, Nesp, and Gnas are all part of the same transcription unit; transcripts for Gnasxl and Nesp are alternatively spliced onto exon 2 of Gnas. This demonstrates an imprinting mechanism in which two oppositely imprinted genes share the same downstream exons.
Resumo:
The epithelial Na+ channel (ENaC) belongs to a new class of channel proteins called the ENaC/DEG superfamily involved in epithelial Na+ transport, mechanotransduction, and neurotransmission. The role of ENaC in Na+ homeostasis and in the control of blood pressure has been demonstrated recently by the identification of mutations in ENaC β and γ subunits causing hypertension. The function of ENaC in Na+ reabsorption depends critically on its ability to discriminate between Na+ and other ions like K+ or Ca2+. ENaC is virtually impermeant to K+ ions, and the molecular basis for its high ionic selectivity is largely unknown. We have identified a conserved Ser residue in the second transmembrane domain of the ENaC α subunit (αS589), which when mutated allows larger ions such as K+, Rb+, Cs+, and divalent cations to pass through the channel. The relative ion permeability of each of the αS589 mutants is related inversely to the ionic radius of the permeant ion, indicating that αS589 mutations increase the molecular cutoff of the channel by modifying the pore geometry at the selectivity filter. Proper geometry of the pore is required to tightly accommodate Na+ and Li+ ions and to exclude larger cations. We provide evidence that ENaC discriminates between cations mainly on the basis of their size and the energy of dehydration.
Resumo:
A process that we refer to as control by epistasy of synthesis (CES process) occurs during chloroplast protein biogenesis in Chlamydomonas reinhardtii: the synthesis of some chloroplast-encoded subunits, the CES subunits, is strongly attenuated when some other subunits from the same complex, the dominant subunits, are missing. Herein we investigate the molecular basis of the CES process for the biogenesis of the cytochrome b6f complex and show that negative autoregulation of cytochrome f translation occurs in the absence of other complex subunits. This autoregulation is mediated by an interaction, either direct or indirect, between the 5′ untranslated region of petA mRNA, which encodes cytochrome f, and the C-terminal domain of the unassembled protein. This model for the regulation of cytochrome f translation explains both the decreased rate of cytochrome f synthesis in vivo in the absence of its assembly partners and its increase in synthesis when significant accumulation of the C-terminal domain of the protein is prevented. When expressed from a chimeric mRNA containing the atpA 5′ untranslated region, cytochrome f no longer showed an assembly-dependent regulation of translation. Conversely, the level of antibiotic resistance conferred by a chimeric petA-aadA-rbcL gene was shown to depend on the state of assembly of cytochrome b6f complexes and on the accumulation of the C-terminal domain of cytochrome f. We discuss the possible ubiquity of the CES process in organellar protein biogenesis.
Resumo:
A cellular protein, previously described as p35/38, binds to the complementary (−)-strand of the leader RNA and intergenic (IG) sequence of mouse hepatitis virus (MHV) RNA. The extent of the binding of this protein to IG sites correlates with the efficiency of the subgenomic mRNA transcription from that IG site, suggesting that it is a requisite transcription factor. We have purified this protein and determined by partial peptide sequencing that it is heterogeneous nuclear ribonucleoprotein (hnRNP) A1, an abundant, primarily nuclear protein. hnRNP A1 shuttles between the nucleus and cytoplasm and plays a role in the regulation of alternative RNA splicing. The MHV(−)-strand leader and IG sequences conform to the consensus binding motifs of hnRNP A1. Recombinant hnRNP A1 bound to these two RNA regions in vitro in a sequence-specific manner. During MHV infection, hnRNP A1 relocalizes from the nucleus to the cytoplasm, where viral replication occurs. These data suggest that hnRNP A1 is a cellular factor that regulates the RNA-dependent RNA transcription of the virus.
Resumo:
Tyk2 belongs to the Janus kinase (JAK) family of receptor associated tyrosine kinases, characterized by a large N-terminal region, a kinase-like domain and a tyrosine kinase domain. It was previously shown that Tyk2 contributes to interferon-α (IFN-α) signaling not only catalytically, but also as an essential intracellular component of the receptor complex, being required for high affinity binding of IFN-α. For this function the tyrosine kinase domain was found to be dispensable. Here, it is shown that mutant cells lacking Tyk2 have significantly reduced IFN-α receptor 1 (IFNAR1) protein level, whereas the mRNA level is unaltered. Expression of the N-terminal region of Tyk2 in these cells reconstituted wild-type IFNAR1 level, but did not restore the binding activity of the receptor. Studies of mutant Tyk2 forms deleted at the N terminus indicated that the integrity of the N-terminal region is required to sustain IFNAR1. These studies also showed that the N-terminal region does not directly modulate the basal autophosphorylation activity of Tyk2, but it is required for efficient in vitro IFNAR1 phosphorylation and for rendering the enzyme activatable by IFN-α. Overall, these results indicate that distinct Tyk2 domains provide different functions to the receptor complex: the N-terminal region sustains IFNAR1 level, whereas the kinase-like domain provides a function toward high affinity ligand binding.
Resumo:
Expansion of a CTG trinucleotide repeat in the 3′ untranslated region (UTR) of DMPK, the gene encoding myotonic dystrophy protein kinase, induces the dominantly inherited neuromuscular disorder myotonic dystrophy (DM). Transcripts containing the expanded trinucleotide are abundant in differentiated cultured myoblasts, and they are spliced and polyadenylylated normally. However, mutant transcripts never reach the cytoplasm in these nonmitotic cells; instead, they form stable clusters that are tightly linked to the nuclear matrix, which can prevent effective biochemical purification of these transcripts. In DM patients, reduced DMPK protein levels, consequent to nuclear retention of mutant transcripts, are probably a cause of disease development. Formation of nuclear foci is a novel mechanism for preventing transcript export and effecting a loss of gene function.
Resumo:
Neuronal signaling requires that synaptic proteins be appropriately localized within the cell and regulated there. In mammalian neurons, polyribosomes are found not just in the cell body, but also in dendrites where they are concentrated within or beneath the dendritic spine. The α subunit of Ca2+-calmodulin-dependent protein kinase II (CaMKIIα) is one of only five mRNAs known to be present within the dendrites, as well as in the soma of neurons. This targeted subcellular localization of the mRNA for CaMKIIα provides a possible cell biological mechanism both for controlling the distribution of the cognate protein and for regulating independently the level of protein expression in individual dendritic spines. To characterize the cis-acting elements involved in the localization of dendritic mRNA we have produced two lines of transgenic mice in which the CaMKIIα promoter is used to drive the expression of a lacZ transcript, which either contains or lacks the 3′-untranslated region of the CaMKIIα gene. Although both lines of mice show expression in forebrain neurons that parallels the expression of the endogenous CaMKIIα gene, only the lacZ transcripts bearing the 3′-untranslated region are localized to dendrites. The β-galactosidase protein shows a variable level of expression along the dendritic shaft and within dendritic spines, which suggests that neurons can control the local biochemistry of the dendrite either through differential localization of the mRNA or variations in the translational efficiency at different sites along the dendrite.
Resumo:
In Papua New Guinea (PNG), numerous blood group polymorphisms and hemoglobinopathies characterize the human population. Human genetic polymorphisms of this nature are common in malarious regions, and all four human malaria parasites are holoendemic below 1500 meters in PNG. At this elevation, a prominent condition characterizing Melanesians is α+-thalassemia. Interestingly, recent epidemiological surveys have demonstrated that α+-thalassemia is associated with increased susceptibility to uncomplicated malaria among young children. It is further proposed that α+-thalassemia may facilitate so-called “benign” Plasmodium vivax infection to act later in life as a “natural vaccine” against severe Plasmodium falciparum malaria. Here, in a P. vivax-endemic region of PNG where the resident Abelam-speaking population is characterized by a frequency of α+-thalassemia ≥0.98, we have discovered the mutation responsible for erythrocyte Duffy antigen-negativity (Fy[a−b−]) on the FY*A allele. In this study population there were 23 heterozygous and no homozygous individuals bearing this new allele (allele frequency, 23/1062 = 0.022). Flow cytometric analysis illustrated a 2-fold difference in erythroid-specific Fy-antigen expression between heterozygous (FY*A/FY*Anull) and homozygous (FY*A/FY*A) individuals, suggesting a gene-dosage effect. In further comparisons, we observed a higher prevalence of P. vivax infection in FY*A/FY*A (83/508 = 0.163) compared with FY*A/FY*Anull (2/23 = 0.087) individuals (odds ratio = 2.05, 95% confidence interval = 0.47–8.91). Emergence of FY*Anull in this population suggests that P. vivax is involved in selection of this erythroid polymorphism. This mutation would ultimately compromise α+-thalassemia/P. vivax-mediated protection against severe P. falciparum malaria.
Resumo:
The Saccharomyces cerevisiae myosin-V, Myo2p, has been implicated in the polarized movement of several organelles and is essential for yeast viability. We have shown previously that Myo2p is required for the movement of a portion of the lysosome (vacuole) into the bud and consequently for proper inheritance of this organelle during cell division. Class V myosins have a globular carboxyl terminal tail domain that is proposed to mediate localization of the myosin, possibly through interaction with organelle-specific receptors. Here we describe a myo2 allele whose phenotypes support this hypothesis. vac15–1/myo2–2 has a single mutation in this globular tail domain, causing defects in vacuole movement and inheritance. Although a portion of wild-type Myo2p fractionates with the vacuole, the myo2–2 gene product does not. In addition, the mutant protein does not concentrate at sites of active growth, the predominant location of wild-type Myo2p. Although deletion of the tail domain is lethal, the myo2–2 gene product retains the essential functions of Myo2p. Moreover, myo2–2 does not cause the growth defects and lethal genetic interactions seen in myo2–66, a mutant defective in the actin-binding domain. These observations suggest that the myo2–2 mutation specifically disrupts interactions with selected myosin receptors, namely those on the vacuole membrane and those at sites of polarized growth.
Resumo:
Cockayne syndrome (CS) is a human genetic disorder characterized by UV sensitivity, developmental abnormalities, and premature aging. Two of the genes involved, CSA and CSB, are required for transcription-coupled repair (TCR), a subpathway of nucleotide excision repair that removes certain lesions rapidly and efficiently from the transcribed strand of active genes. CS proteins have also been implicated in the recovery of transcription after certain types of DNA damage such as those lesions induced by UV light. In this study, site-directed mutations have been introduced to the human CSB gene to investigate the functional significance of the conserved ATPase domain and of a highly acidic region of the protein. The CSB mutant alleles were tested for genetic complementation of UV-sensitive phenotypes in the human CS-B homologue of hamster UV61. In addition, the CSB mutant alleles were tested for their ability to complement the sensitivity of UV61 cells to the carcinogen 4-nitroquinoline-1-oxide (4-NQO), which introduces bulky DNA adducts repaired by global genome repair. Point mutation of a highly conserved glutamic acid residue in ATPase motif II abolished the ability of CSB protein to complement the UV-sensitive phenotypes of survival, RNA synthesis recovery, and gene-specific repair. These data indicate that the integrity of the ATPase domain is critical for CSB function in vivo. Likewise, the CSB ATPase point mutant failed to confer cellular resistance to 4-NQO, suggesting that ATP hydrolysis is required for CSB function in a TCR-independent pathway. On the contrary, a large deletion of the acidic region of CSB protein did not impair the genetic function in the processing of either UV- or 4-NQO-induced DNA damage. Thus the acidic region of CSB is likely to be dispensable for DNA repair, whereas the ATPase domain is essential for CSB function in both TCR-dependent and -independent pathways.
Resumo:
Genes located on the mammalian Y chromosome outside of the pseudoautosomal region do not recombine with those on the X and are predicted to either undergo selection for male function or gradually degenerate because of an accumulation of deleterious mutations. Here, phylogenetic analyses of X-Y homologues, Zfx and Zfy, among 26 felid species indicate two ancestral episodes of directed genetic exchange (ectopic gene conversion) from X to Y: once during the evolution of pallas cat and once in a common predecessor of ocelot lineage species. Replacement of the more rapidly evolving Y homologue with the evolutionarily constrained X copy may represent a mechanism for adaptive editing of functional genes on the nonrecombining region of the mammalian Y chromosome.