4 resultados para Plastic Money
em National Center for Biotechnology Information - NCBI
Resumo:
Electronic systems that use rugged lightweight plastics potentially offer attractive characteristics (low-cost processing, mechanical flexibility, large area coverage, etc.) that are not easily achieved with established silicon technologies. This paper summarizes work that demonstrates many of these characteristics in a realistic system: organic active matrix backplane circuits (256 transistors) for large (≈5 × 5-inch) mechanically flexible sheets of electronic paper, an emerging type of display. The success of this effort relies on new or improved processing techniques and materials for plastic electronics, including methods for (i) rubber stamping (microcontact printing) high-resolution (≈1 μm) circuits with low levels of defects and good registration over large areas, (ii) achieving low leakage with thin dielectrics deposited onto surfaces with relief, (iii) constructing high-performance organic transistors with bottom contact geometries, (iv) encapsulating these transistors, (v) depositing, in a repeatable way, organic semiconductors with uniform electrical characteristics over large areas, and (vi) low-temperature (≈100°C) annealing to increase the on/off ratios of the transistors and to improve the uniformity of their characteristics. The sophistication and flexibility of the patterning procedures, high level of integration on plastic substrates, large area coverage, and good performance of the transistors are all important features of this work. We successfully integrate these circuits with microencapsulated electrophoretic “inks” to form sheets of electronic paper.
Resumo:
Gene order in the chromosomes of Escherichia coli K-12 and Salmonella typhimurium LT2, and in many other species of Salmonella, is strongly conserved, even though the genera diverged about 160 million years ago. However, partial digestion of chromosomal DNA of Salmonella typhi, the causal organism of typhoid fever, with the endonuclease I-CeuI followed by separation of the DNA fragments by pulsed-field gel electrophoresis showed that the chromosomes of independent wild-type isolates of S. typhi are rearranged due to homologous recombination between the seven rrn genes that code for ribosomal RNA. The order of genes within the I-CeuI fragments is largely conserved, but the order of the fragments on the chromosome is rearranged. Twenty-one different orders of the I-CeuI fragments were detected among the 127 wild-type strains we examined. Duplications and deletions were not found, but transpositions and inversions were common. Transpositions of I-CeuI fragments into sites that do not change their distance from the origin of replication (oriC) are frequently detected among the wild-type strains, but transpositions that move the fragments much further from oriC were rare. This supports the gene dosage hypothesis that genes at different distances from oriC have different gene dosages and, hence, different gene expression, and that during evolution genes become adapted to their specific location; thus, cells with changes in gene location due to transpositions may be less fit. Therefore, gene dosage may be one of the forces that conserves gene order, although its effects seem less strong in S. typhi than in other enteric bacteria. However, both the gene dosage and the genomic balance hypotheses, the latter of which states that the origin (oriC) and terminus (TER) of replication must be separated by 180 degrees C, need further investigation.