14 resultados para Plasma-levels
em National Center for Biotechnology Information - NCBI
Resumo:
We tested the hypothesis that increases in tumor necrosis factor alpha (TNF-alpha) induced by human immunodeficiency virus (HIV) are associated with the increases in slow-wave sleep seen in early HIV infection and the decrease with sleep fragmentation seen in advanced HIV infection. Nocturnal sleep disturbances and associated fatigue contribute to the disability of HIV infection. TNF-alpha causes fatigue in clinical use and promotes slow-wave sleep in animal models. With slow progress toward a vaccine and weak effects from current therapies, efforts are directed toward extending productive life of HIV-infected individuals and shortening the duration of disability in terminal illness. We describe previously unrecognized nocturnal cyclic variations in plasma levels of TNF-alpha in all subjects. In 6 of 10 subjects (1 control subject, 3 HIV-seropositive patients with CD4+ cell number > 400 cells per microliters, and 2 HIV-positive patients with CD4+ cell number < 400 cells per microliters), these fluctuations in TNF-alpha were coupled to the known rhythm of electroencephalogram delta amplitude (square root of power) during sleep. This coupling was not present in 3 HIV-positive subjects with CD4+ cell number < 400 cells per microliters and 1 control subject. In 5 HIV subjects with abnormally low CD4+ cell counts ( < 400 cells per microliters), the number of days since seroconversion correlated significantly with low correlation between TNF-alpha and delta amplitude. We conclude that a previously unrecognized normal, physiological coupling exists between TNF-alpha and delta amplitude during sleep and that the lessened likelihood of this coupling in progressive HIV infection may be important in understanding fatigue-related symptoms and disabilities.
Resumo:
Apolipoprotein E- (apoE) deficient (E−/−) mice develop severe hyperlipidemia and diffuse atherosclerosis. Low-dose expression of a human apoE3 transgene in macrophages of apoE-deficient mice (E−/−hTgE+/0), which results in about 5% of wild-type apoE plasma levels, did not correct hyperlipidemia but significantly reduced the extent of atherosclerotic lesions. To investigate the contribution of apoE to reverse cholesterol transport, we compared plasmas of wild-type (E+/+), E−/−, and E−/−hTgE+/0 mice for the appearance of apoE-containing lipoproteins by electrophoresis and their capacity to take up and esterify 3H-labeled cholesterol from radiolabeled fibroblasts or J774 macrophages. Wild-type plasma displayed lipoproteins containing apoE that were the size of high density lipoprotein and that had either electrophoretic α or γ mobilities. Similar particles were also present in E−/−hTgE+/0 plasma. Depending on incubation time, E−/− plasma released 48–74% less 3H-labeled cholesterol from fibroblasts than E+/+ plasma, whereas cholesterol efflux into E−/−hTgE+/0 plasma was only 11–25% lower than into E+/+ plasma. E−/−hTgE+/0 plasma also released 10% more 3H-labeled cholesterol from radiolabeled J774 macrophages than E−/− plasma. E+/+ and E−/−hTgE+/0 plasma each esterified significantly more cell-derived 3H-labeled cholesterol than E−/− plasma. Moreover, E−/− plasma accumulated much smaller proportions of fibroblast-derived 3H-labeled cholesterol in fractions with electrophoretic γ and α mobility than E+/+ and E−/−hTgE+/0 plasma. Thus, low-dose expression of apoE in macrophages nearly restored the cholesterol efflux capacity of apoE-deficient plasma through the formation of apoE-containing particles, which efficiently take up cell-derived cholesterol, and through the increase of cholesterol esterification activity. Thus, macrophage-derived apoE may protect against atherosclerosis by increasing cholesterol efflux from arterial wall cells.
Resumo:
Plasma levels of corticosterone are often used as a measure of “stress” in wild animal populations. However, we lack conclusive evidence that different stress levels reflect different survival probabilities between populations. Galápagos marine iguanas offer an ideal test case because island populations are affected differently by recurring El Niño famine events, and population-level survival can be quantified by counting iguanas locally. We surveyed corticosterone levels in six populations during the 1998 El Niño famine and the 1999 La Niña feast period. Iguanas had higher baseline and handling stress-induced corticosterone concentrations during famine than feast conditions. Corticosterone levels differed between islands and predicted survival through an El Niño period. However, among individuals, baseline corticosterone was only elevated when body condition dropped below a critical threshold. Thus, the population-level corticosterone response was variable but nevertheless predicted overall population health. Our results lend support to the use of corticosterone as a rapid quantitative predictor of survival in wild animal populations.
Resumo:
The very low density lipoprotein (VLDL) receptor is a recently cloned member of the low density lipoprotein (LDL) receptor family that mediates the binding and uptake of VLDL when overexpressed in animal cells. Its sequence is 94% identical in humans and rabbits and 84% identical in humans and chickens, implying a conserved function. Its high level expression in muscle and adipose tissue suggests a role in VLDL triacylglycerol delivery. Mutations in the chicken homologue cause female sterility, owing to impaired VLDL and vitellogenin uptake during egg yolk formation. We used homologous recombination in mouse embryonic stem cells to produce homozygous knockout mice that lack immunodetectable VLDL receptors. Homozygous mice of both sexes were viable and normally fertile. Plasma levels of cholesterol, triacylglycerol, and lipoproteins were normal when the mice were fed normal, high-carbohydrate, or high-fat diets. The sole abnormality detected was a modest decrease in body weight, body mass index, and adipose tissue mass as determined by the weights of epididymal fat pads. We conclude that the VLDL receptor is not required for VLDL clearance from plasma or for ovulation in mice.
Resumo:
We have generated mice with markedly elevated plasma levels of human low density lipoprotein (LDL) and reduced plasma levels of high density lipoprotein. These mice have no functional LDL receptors [LDLR−/−] and express a human apolipoprotein B-100 (apoB) transgene [Tg(apoB+/+)] with or without an apo(a) transgene [Tg(apoa+/−)]. Twenty animals (10 males and 10 females) of each of the following four genotypes were maintained on a chow diet: (i) LDLR−/−, (ii) LDLR−/−;Tg(apoa+/−), (iii) LDLR−/−;Tg(apoB+/+), and (iv)LDLR−/−;Tg(apoB+/+);Tg(apo+/−). The mice were killed at 6 mo, and the percent area of the aortic intimal surface that stained positive for neutral lipid was quantified. Mean percent areas of lipid staining were not significantly different between the LDLR−/− and LDLR−/−;Tg(apoa+/−) mice (1.0 ± 0.2% vs. 1.4 ± 0.3%). However, the LDLR−/−;Tg(apoB+/+) mice had ≈15-fold greater mean lesion area than the LDLR−/− mice. No significant difference was found in percent lesion area in the LDLR−/−;Tg(apoB+/+) mice whether or not they expressed apo(a) [18.5 ± 2.5%, without lipoprotein(a), Lp(a), vs. 16.0 ± 1.7%, with Lp(a)]. Histochemical analyses of the sections from the proximal aorta of LDLR−/−;Tg(apoB+/+) mice revealed large, complex, lipid-laden atherosclerotic lesions that stained intensely with human apoB-100 antibodies. In mice expressing Lp(a), large amounts of apo(a) protein colocalized with apoB-100 in the lesions. We conclude that LDLR−/−; Tg(apoB+/+) mice exhibit accelerated atherosclerosis on a chow diet and thus provide an excellent animal model in which to study atherosclerosis. We found no evidence that apo(a) increased atherosclerosis in this animal model.
Resumo:
Angioplasty procedures are increasingly used to reestablish blood flow in blocked atherosclerotic coronary arteries. A serious complication of these procedures is reocclusion (restenosis), which occurs in 30–50% of patients. Migration of coronary artery smooth muscle cells (CASMCs) to the site of injury caused by angioplasty and subsequent proliferation are suggested mechanisms of reocclusion. Using both cultured human CASMCs and coronary atherectomy tissues, we studied the roles of osteopontin (OPN) and one of its receptors, αvβ3 integrin, in the pathogenesis of coronary restenosis. We also measured the plasma levels of OPN before and after angioplasty and determined the effect of exogenous OPN on CASMC migration, extracellular matrix invasion, and proliferation. We found that cultured CASMCs during log phase of growth and smooth muscle cell layer of the coronary atherosclerotic tissues of patients express both OPN mRNA and protein at a significantly elevated level compared with controls. Interestingly, whereas the baseline plasma OPN levels in control samples were virtually undetectable, those in patient plasma were remarkably high. We also found that interaction of OPN with αvβ3 integrin, expressed on CASMCs, causes migration, extracellular matrix invasion, and proliferation. These effects were abolished when OPN or αvβ3 integrin gene expression in CASMCs was inhibited by specific antisense S-oligonucleotide treatment or OPN-αvβ3 interaction was blocked by treatment of CASMCs with antibodies against OPN or αvβ3 integrin. Our results demonstrate that OPN and αvβ3 integrin play critical roles in regulating cellular functions deemed essential for restenosis. In addition, these results raise the possibility that transient inhibition of OPN gene expression or blocking of OPN-αvβ3 interaction may provide a therapeutic approach to preventing restenosis.
Resumo:
Recent data have identified leptin as an afferent signal in a negative-feedback loop regulating the mass of the adipose tissue. High leptin levels are observed in obese humans and rodents, suggesting that, in some cases, obesity is the result of leptin insensitivity. This hypothesis was tested by comparing the response to peripherally and centrally administered leptin among lean and three obese strains of mice: diet-induced obese AKR/J, New Zealand Obese (NZO), and Ay. Subcutaneous leptin infusion to lean mice resulted in a dose-dependent loss of body weight at physiologic plasma levels. Chronic infusions of leptin intracerebroventricularly (i.c.v.) at doses of 3 ng/hr or greater resulted in complete depletion of visible adipose tissue, which was maintained throughout 30 days of continuous i.c.v. infusion. Direct measurement of energy balance indicated that leptin treatment did not increase total energy expenditure but prevented the decrease that follows reduced food intake. Diet-induced obese mice lost weight in response to peripheral leptin but were less sensitive than lean mice. NZO mice were unresponsive to peripheral leptin but were responsive to i.c.v. leptin. Ay mice did not respond to subcutaneous leptin and were 1/100 as sensitive to i.c.v. leptin. The decreased response to leptin in diet-induced obese, NZO, and Ay mice suggests that obesity in these strains is the result of leptin resistance. In NZO mice, leptin resistance may be the result of decreased transport of leptin into the cerebrospinal fluid, whereas in Ay mice, leptin resistance probably results from defects downstream of the leptin receptor in the hypothalamus.
Resumo:
The increasing resistance of the malaria parasite Plasmodium falciparum to currently available drugs demands a continuous effort to develop new antimalarial agents. In this quest, the identification of antimalarial effects of drugs already in use for other therapies represents an attractive approach with potentially rapid clinical application. We have found that the extensively used antimycotic drug clotrimazole (CLT) effectively and rapidly inhibited parasite growth in five different strains of P. falciparum, in vitro, irrespective of their chloroquine sensitivity. The concentrations for 50% inhibition (IC50), assessed by parasite incorporation of [3H]hypoxanthine, were between 0.2 and 1.1 μM. CLT concentrations of 2 μM and above caused a sharp decline in parasitemia, complete inhibition of parasite replication, and destruction of parasites and host cells within a single intraerythrocytic asexual cycle (≈48 hr). These concentrations are within the plasma levels known to be attained in humans after oral administration of the drug. The effects were associated with distinct morphological changes. Transient exposure of ring-stage parasites to 2.5 μM CLT for a period of 12 hr caused a delay in development in a fraction of parasites that reverted to normal after drug removal; 24-hr exposure to the same concentration caused total destruction of parasites and parasitized cells. Chloroquine antagonized the effects of CLT whereas mefloquine was synergistic. The present study suggests that CLT holds much promise as an antimalarial agent and that it is suitable for a clinical study in P. falciparum malaria.
Resumo:
11β-hydroxysteroid dehydrogenase type 1 (11β-HSD-1) intracellularly regenerates active corticosterone from circulating inert 11-dehydrocorticosterone (11-DHC) in specific tissues. The hippocampus is a brain structure particularly vulnerable to glucocorticoid neurotoxicity with aging. In intact hippocampal cells in culture, 11β-HSD-1 acts as a functional 11β-reductase reactivating inert 11-DHC to corticosterone, thereby potentiating kainate neurotoxicity. We examined the functional significance of 11β-HSD-1 in the central nervous system by using knockout mice. Aged wild-type mice developed elevated plasma corticosterone levels that correlated with learning deficits in the watermaze. In contrast, despite elevated plasma corticosterone levels throughout life, this glucocorticoid-associated learning deficit was ameliorated in aged 11β-HSD-1 knockout mice, implicating lower intraneuronal corticosterone levels through lack of 11-DHC reactivation. Indeed, aged knockout mice showed significantly lower hippocampal tissue corticosterone levels than wild-type controls. These findings demonstrate that tissue corticosterone levels do not merely reflect plasma levels and appear to play a more important role in hippocampal functions than circulating blood levels. The data emphasize the crucial importance of local enzymes in determining intracellular glucocorticoid activity. Selective 11β-HSD-1 inhibitors may protect against hippocampal function decline with age.
Resumo:
When administered in high doses to HIV positive (HIV+) individuals, interleukin 2 (IL-2) causes extreme toxicity and markedly increases plasma HIV levels. Integration of the information from the structure-activity relationships of the IL-2 receptor interaction, the cellular distribution of the different classes of IL-2 receptors, and the pharmacokinetics of IL-2 provides for the rationale that low IL-2 doses should circumvent toxicity. Therefore, to identify a nontoxic, but effective and safe IL-2 treatment regimen that does not stimulate viral replication, doses of IL-2 from 62,500 to 250,000 IU/m2/day were administered subcutaneously for 6 months to 16 HIV+ individuals with 200-500 CD4+ T cells/mm3. IL-2 was already detectable in the plasma of most HIV+ individuals even before therapy. Peak plasma IL-2 levels were near saturating for high affinity IL-2 receptors in 10 individuals who received the maximum nontoxic dose, which ranged from 187,500 to 250,000 IU/m2/day. During the 6 months of treatment at this dose range, plasma levels of proinflammatory cytokines remained undetectable, and plasma HIV RNA levels did not change significantly. However, delayed type hypersensitivity responses to common recall antigens were markedly augmented, and there were IL-2 dose-dependent increases in circulating Natural Killer cells, eosinophils, monocytes, and CD4+ T cells. Expanded clinical trials of low dose IL-2 are now warranted, especially in combination with effective antivirals to test for the prevention of immunodeficiency and the emergence of drug-resistant mutants and for the eradication of residual virions.
Resumo:
Apolipoprotein (apo-) B mRNA editing is the deamination of cytidine that creates a new termination codon and produces a truncated version of apo-B (apo-B48). The cytidine deaminase catalytic subunit [apo-B mRNA-editing enzyme catalytic polypeptide 1 (APOBEC-1)] of the multiprotein editing complex has been identified. We generated transgenic rabbits and mice expressing rabbit APOBEC-1 in their livers to determine whether hepatic expression would lower low density lipoprotein cholesterol concentrations. The apo-B mRNA from the livers of the transgenic mice and rabbit was extensively edited, and the transgenic animals had reduced concentrations of apo-B100 and low density lipoproteins compared with control animals. Unexpectedly, all of the transgenic mice and a transgenic rabbit had liver dysplasia, and many transgenic mice developed hepatocellular carcinomas. Many of the mouse livers were hyperplastic and filled with lipid. Other hepatic mRNAs with sequence motifs similar to apo-B mRNA were examined for this type of editing (i.e., cytidine deamination). One of these, tyrosine kinase, was edited in livers of transgenic mice but not of controls. This result demonstrates that other mRNAs can be edited by the overexpressed editing enzyme and suggests that aberrant editing of hepatic mRNAs involved in cell growth and regulation is the cause of the tumorigenesis. Finally, these findings compromise the potential use of APOBEC-1 for gene therapy to lower plasma levels of low density lipoproteins.
Resumo:
A potent, orally active growth hormone (GH) secretagogue L-163,191 belonging to a recently synthesized structural class has been characterized. L-163,191 releases GH from rat pituitary cells in culture with EC50 = 1.3 +/- 0.09 nM and is mechanistically indistinguishable from the GH-releasing peptide GHRP-6 and the prototypical nonpeptide GH secretagogue L-692,429 but clearly distinguishable from the natural GH secretagogue, GH-releasing hormone. L-163,191 elevates GH in dogs after oral doses as low as 0.125 mg/kg and was shown to be specific in its release of GH without significant effect on plasma levels of aldosterone, luteinizing hormone, thyroxine, and prolactin after oral administration of 1 mg/kg. Only modest increases in cortisol were observed. Based on these properties, L-163,191 has been selected for clinical studies.
Resumo:
Aberrant expression of transforming growth factor beta 1 (TGF-beta 1) has been implicated in a number of disease processes, particularly those involving fibrotic and inflammatory lesions. To determine the in vivo effects of overexpression of TGF-beta 1 on the function and structure of hepatic as well as extrahepatic tissues, transgenic mice were generated containing a fusion gene (Alb/TGF-beta 1) consisting of modified porcine TGF-beta 1 cDNA under the control of the regulatory elements of the mouse albumin gene. Five transgenic lines were developed, all of which expressed the Alb/TGF-beta 1 transgene selectively in hepatocytes. The transgenic line 25 expressing the highest level of the transgene in the liver also had high (> 10-fold over control) plasma levels of TGF-beta 1. Hepatic fibrosis and apoptotic death of hepatocytes developed in all the transgenic lines but was more pronounced in line 25. The fibrotic process was characterized by deposition of collagen around individual hepatocytes and within the space of Disse in a radiating linear pattern. Several extrahepatic lesions developed in line 25, including glomerulonephritis and renal failure, arteritis and myocarditis, as well as atrophic changes in pancreas and testis. The results from this transgenic model strongly support the proposed etiological role for TGF-beta 1 in a variety of fibrotic and inflammatory disorders. The transgenic model may also provide an appropriate paradigm for testing therapeutic interventions aimed at neutralizing the detrimental effects of this important cytokine.
Resumo:
Lowe syndrome is an X-linked disorder that has a complex phenotype that includes progressive renal failure and blindness. The disease is caused by mutations in an inositol polyphosphate 5-phosphatase designated OCRL. It has been shown that the OCRL protein is found on the surface of lysosomes and that a renal tubular cell line deficient in OCRL accumulated substrate phosphatidylinositol 4,5-bisphosphate. Because this lipid is required for vesicle trafficking from lysosomes, we postulate that there is a defect in lysosomal enzyme trafficking in patients with Lowe syndrome that leads to increased extracellular lysosomal enzymes and might lead to tissue damage and contribute to the pathogenesis of the disease. We have measured seven lysosomal enzymes in the plasma of 15 patients with Lowe syndrome and 15 age-matched male controls. We find a 1.6- to 2.0-fold increase in all of the enzymes measured. When the data was analyzed by quintiles of activity for all of the enzymes, we found that 95% of values in the lowest quintile come from normal subjects whereas in the highest quintile 85% of the values are from patients with Lowe syndrome. The increased enzyme levels are not attributable to renal insufficiency because there was no difference in enzyme activity in the four patients with the highest creatinine levels compared with the six patients with the lowest creatinine values.