6 resultados para Plants of nutrition

em National Center for Biotechnology Information - NCBI


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ngrol genes (NgrolB, NgrolC, NgORF13, and NgORF14) that are similar in sequence to genes in the left transferred DNA (TL-DNA) of Agrobacterium rhizogenes have been found in the genome of untransformed plants of Nicotiana glauca. It has been suggested that a bacterial infection resulted in transformation of Ngrol genes early in the evolution of the genus Nicotiana. Although the corresponding four rol genes in TL-DNA provoked hairy-root syndrome in plants, present-day N. glauca and plants transformed with Ngrol genes did not exhibit this phenotype. Sequenced complementation analysis revealed that the NgrolB gene did not induce adventitious roots because it contained two point mutations. Single-base site-directed mutagenesis at these two positions restored the capacity for root induction to the NgrolB gene. When the NgrolB, with these two base substitutions, was positioned under the control of the cauliflower mosaic virus 35S promoter (P35S), transgenic tobacco plants exhibited morphological abnormalities that were not observed in P35s-RirolB plants. In contrast, the activity of the NgrolC gene may have been conserved after an ancient infection by bacteria. Discussed is the effect of the horizontal gene transfer of the Ngrol genes and mutations in the NgrolB gene on the phenotype of ancient plants during the evolution of N. glauca.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The existence in higher plants of an additional β-oxidation system in mitochondria, besides the well-characterized peroxisomal system, is often considered controversial. Unequivocal demonstration of β-oxidation activity in mitochondria should rely on identification of the enzymes specific to mitochondrial β-oxidation. Acyl-coenzyme A dehydrogenase (ACAD) (EC 1.3.99.2,3) activity was detected in purified mitochondria from maize (Zea mays L.) root tips and from embryonic axes of early-germinating sunflower (Helianthus annuus L.) seeds, using as the enzyme assay the reduction of 2,6-dichlorophenolindophenol, with phenazine methosulfate as the intermediate electron carrier. Subcellular fractionation showed that this ACAD activity was associated with mitochondrial fractions. Comparison of ACAD activity in mitochondria and acyl-coenzyme A oxidase activity in peroxisomes showed differences of substrate specificities. Embryonic axes of sunflower seeds were used as starting material for the purification of ACADs. Two distinct ACADs, with medium-chain and long-chain substrate specificities, respectively, were separated by their chromatographic behavior, which was similar to that of mammalian ACADs. The characterization of these ACADs is discussed in relation to the identification of expressed sequenced tags corresponding to ACADs in cDNA sequence analysis projects and with the potential roles of mitochondrial β-oxidation in higher plants.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The quantitative significance of reserves and current assimilates in regrowing tillers of severely defoliated plants of perennial ryegrass (Lolium perenne L.) was assessed by a new approach, comprising 13C/12C and 15N/14N steady-state labeling and separation of sink and source zones. The functionally distinct zones showed large differences in the kinetics of currently assimilated C and N. These are interpreted in terms of ”substrate” and ”tissue” flux among zones and C and N turnover within zones. Tillers refoliated rapidly, although C and N supply was initially decreased. Rapid refoliation was associated with (a) transient depletion of water-soluble carbohydrates and dilution of structural biomass in the immature zone of expanding leaves, (b) rapid transition to current assimilation-derived growth, and (c) rapid reestablishment of a balanced C:N ratio in growth substrate. This balance (C:N, approximately 8.9 [w/w] in new biomass) indicated coregulation of growth by C and N supply and resulted from complementary fluxes of reserve- and current assimilation-derived C and N. Reserves were the dominant N source until approximately 3 d after defoliation. Amino-C constituted approximately 60% of the net influx of reserve C during the first 2 d. Carbohydrate reserves were an insignificant source of C for tiller growth after d 1. We discuss the physiological mechanisms contributing to defoliation tolerance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Indian mustard (Brassica juncea) plants exposed to Pb and EDTA in hydroponic solution were able to accumulate up to 55 mmol kg−1 Pb in dry shoot tissue (1.1% [w/w]). This represents a 75-fold concentration of Pb in shoot tissue over that in solution. A threshold concentration of EDTA (0.25 mm) was found to be required to stimulate this dramatic accumulation of both Pb and EDTA in shoots. Below this threshold concentration, EDTA also accumulated in shoots but at a reduced rate. Direct measurement of a complex of Pb and EDTA (Pb-EDTA) in xylem exudate of Indian mustard confirmed that the majority of Pb in these plants is transported in coordination with EDTA. The accumulation of EDTA in shoot tissue was also observed to be directly correlated with the accumulation of Pb. Exposure of Indian mustard to high concentrations of Pb and EDTA caused reductions in both the transpiration rate and the shoot water content. The onset of these symptoms was correlated with the presence of free protonated EDTA (H-EDTA) in the hydroponic solution, suggesting that free H-EDTA is more phytotoxic than Pb-EDTA. These studies clearly demonstrate that coordination of Pb transport by EDTA enhances the mobility within the plants of this otherwise insoluble metal ion, allowing plants to accumulate high concentrations of Pb in shoots. The finding that both H-EDTA and Pb-EDTA are mobile within plants also has important implications for the use of metal chelates in plant nutritional research.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Peppermint (Mentha × piperita L.) was independently transformed with a homologous sense version of the 1-deoxy-d-xylulose-5-phosphate reductoisomerase cDNA and with a homologous antisense version of the menthofuran synthase cDNA, both driven by the CaMV 35S promoter. Two groups of transgenic plants were regenerated in the reductoisomerase experiments, one of which remained normal in appearance and development; another was deficient in chlorophyll production and grew slowly. Transgenic plants of normal appearance and growth habit expressed the reductoisomerase transgene strongly and constitutively, as determined by RNA blot analysis and direct enzyme assay, and these plants accumulated substantially more essential oil (about 50% yield increase) without change in monoterpene composition compared with wild-type. Chlorophyll-deficient plants did not afford detectable reductoisomerase mRNA or enzyme activity and yielded less essential oil than did wild-type plants, indicating cosuppression of the reductoisomerase gene. Plants transformed with the antisense version of the menthofuran synthase cDNA were normal in appearance but produced less than half of this undesirable monoterpene oil component than did wild-type mint grown under unstressed or stressed conditions. These experiments demonstrate that essential oil quantity and quality can be regulated by metabolic engineering. Thus, alteration of the committed step of the mevalonate-independent pathway for supply of terpenoid precursors improves flux through the pathway that leads to increased monoterpene production, and antisense manipulation of a selected downstream monoterpene biosynthetic step leads to improved oil composition.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Most evolutionary studies of oceanic islands have focused on the Pacific Ocean. There are very few examples from the Atlantic archipelagos, especially Macaronesia, despite their unusual combination of features, including a close proximity to the continent, a broad range of geological ages, and a biota linked to a source area that existed in the Mediterranean basin before the late Tertiary. A chloroplast DNA (cpDNA) restriction site analysis of Argyranthemum (Asteraceae: Anthemideae), the largest endemic genus of plants of any volcanic archipelago in the Atlantic Ocean, was performed to examine patterns of plant evolution in Macaronesia. cpDNA data indicated that Argyranthemum is a monophyletic group that has speciated recently. The cpDNA tree showed a weak correlation with the current sectional classification and insular distribution. Two major cpDNA lineages were identified. One was restricted to northern archipelagos--e.g., Madeira, Desertas, and Selvagens--and the second comprised taxa endemic to the southern archipelago--e.g., the Canary Islands. The two major radiations identified in the Canaries are correlated with distinct ecological habitats; one is restricted to ecological zones under the influence of the northeastern trade winds and the other to regions that are not affected by these winds. The patterns of phylogenetic relationships in Argyranthemum indicate that interisland colonization between similar ecological zones is the main mechanism for establishing founder populations. This phenomenon, combined with rapid radiation into distinct ecological zones and interspecific hybridization, is the primary explanation for species diversification.