6 resultados para Plant selection
em National Center for Biotechnology Information - NCBI
Resumo:
Many pathogen recognition genes, such as plant R-genes, undergo rapid adaptive evolution, providing evidence that these genes play a critical role in plant-pathogen coevolution. Surprisingly, whether rapid adaptive evolution also occurs in genes encoding other kinds of plant defense proteins is unknown. Unlike recognition proteins, plant chitinases attack pathogens directly, conferring disease resistance by degrading chitin, a component of fungal cell walls. Here, we show that nonsynonymous substitution rates in plant class I chitinase often exceed synonymous rates in the plant genus Arabis (Cruciferae) and in other dicots, indicating a succession of adaptively driven amino acid replacements. We identify individual residues that are likely subject to positive selection by using codon substitution models and determine the location of these residues on the three-dimensional structure of class I chitinase. In contrast to primate lysozymes and plant class III chitinases, structural and functional relatives of class I chitinase, the adaptive replacements of class I chitinase occur disproportionately in the active site cleft. This highly unusual pattern of replacements suggests that fungi directly defend against chitinolytic activity through enzymatic inhibition or other forms of chemical resistance and identifies target residues for manipulating chitinolytic activity. These data also provide empirical evidence that plant defense proteins not involved in pathogen recognition also evolve in a manner consistent with rapid coevolutionary interactions.
Resumo:
The psbA gene of the chloroplast genome has a codon usage that is unusual for plant chloroplast genes. In the present study the evolutionary status of this codon usage is tested by reconstructing putative ancestral psbA sequences to determine the pattern of change in codon bias during angiosperm divergence. It is shown that the codon biases of the ancestral genes are much stronger than all extant flowering plant psbA genes. This is related to previous work that demonstrated a significant increase in synonymous substitution in psbA relative to other chloroplast genes. It is suggested, based on the two lines of evidence, that the codon bias of this gene currently is not being maintained by selection. Rather, the atypical codon bias simply may be a remnant of an ancestral codon bias that now is being degraded by the mutation bias of the chloroplast genome, in other words, that the psbA gene is not at equilibrium. A model for the evolution of selective pressure on the codon usage of plant chloroplast genes is discussed.
Resumo:
Mitochondria are affected by low temperature during seedling establishment in maize (Zea mays L.). We evaluated the associated changes in the mitochondrial properties of populations selected for high (C4-H) and low (C4-L) germination levels at 9.5°C. When seedlings of the two populations were grown at 14°C (near the lower growth limit), the mitochondrial inner membranes of C4-H showed a higher percentage of 18-carbon unsaturated fatty acids, a higher fluidity, and a higher activity of cytochrome c oxidase. We found a positive relationship between these properties and the activity of a mitochondrial peroxidase, allowing C4-H to reduce lipid peroxidation relative to C4-L. The specific activity of reconstituted ATP/ADP translocase was positively associated with this peroxidase activity, suggesting that translocase activity is also affected by chilling. The level of oxidative stress and defense mechanisms are differently expressed in tolerant and susceptible populations when seedlings are grown at a temperature near the lower growth limit. Thus, the interaction between membrane lipids and cytochrome c oxidase seems to play a key role in maize chilling tolerance. Furthermore, the divergent-recurrent selection procedure apparently affects the allelic frequencies of genes controlling such an interaction.
Resumo:
In the beginning of modern plant biology, plant biologists followed a simple model for their science. This model included important branches of plant biology known then. Of course, plants had to be identified and classified first. Thus, there was much work on taxonomy, genetics, and physiology. Ecology and evolution were approached implicitly, rather than explicitly, through paleobotany, taxonomy, morphology, and historical geography. However, the burgeoning explosion of knowledge and great advances in molecular biology, e.g., to the extent that genes for specific traits can be added (or deleted) at will, have created a revolution in the study of plants. Genomics in agriculture has made it possible to address many important issues in crop production by the identification and manipulation of genes in crop plants. The current model of plant study differs from the previous one in that it places greater emphasis on developmental controls and on evolution by differential fitness. In a rapidly changing environment, the current model also explicitly considers the phenotypic variation among individuals on which selection operates. These are calls for the unity of science. In fact, the proponents of “Complexity Theory” think there are common algorithms describing all levels of organization, from atoms all the way to the structure of the universe, and that when these are discovered, the issue of scaling will be greatly simplified! Plant biology must seriously contribute to, among other things, meeting the nutritional needs of the human population. This challenge constitutes a key part of the backdrop against which future evolution will occur. Genetic engineering technologies are and will continue to be an important component of agriculture; however, we must consider the evolutionary implications of these new technologies. Meeting these demands requires drastic changes in the undergraduate curriculum. Students of biology should be trained in molecular, cellular, organismal, and ecosystem biology, including all living organisms.
Resumo:
A transgenic reconstruction experiment has been performed to determine the feasibility of male gametophytic selection to enhance transmission of genes to the next sporophytic generation. For tobacco pollen from a transgenic plant containing a single hygromycin-resistance (hygromycin phosphotransferase, hpt-) gene under control of the dc3 promoter, which is active in both sporophytic and gametophytic tissues, 3 days of in vitro maturation in hygromycin-containing medium was sufficient to result in a 50% reduction of germinating pollen, as expected for meiotic segregation of a single locus insert. Pollination of wild-type plants with the selected pollen yielded 100% transgenic offspring, as determined by the activity of the linked kanamycin-resistance gene--present within the same transferred T-DNA borders--under control of the nos promoter. This is direct proof that selection acting on male gametophytes can be a means to alter the frequency of genes in the progeny.
Resumo:
Establishment of loss-of-function phenotypes is often a key step in determining the biological function of a gene. We describe a procedure to obtain mutant petunia plants in which a specific gene with known sequence is inactivated by the transposable element dTph1. Leaves are collected from batches of 1000 plants with highly active dTph1 elements, pooled according to a three-dimensional matrix, and screened by PCR using a transposon- and a gene-specific primer. In this way individual plants with a dTph1 insertion can be identified by analysis of about 30 PCRs. We found insertion alleles for various genes at a frequency of about 1 in 1000 plants. The plant population can be preserved by selfing all the plants, so that it can be screened for insertions in many genes over a prolonged period.