14 resultados para Plant population

em National Center for Biotechnology Information - NCBI


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present an a priori theoretical framework for the interspecific allometric relationship between stand mass and plant population density. Our model predicts a slope of −\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}\frac{1}{3}\end{equation*}\end{document} between the logarithm of stand mass and the logarithm of stand density, thus conflicting with a previously assumed slope of −½. Our model rests on a heuristic separation of resource-limited living mass and structural mass in the plant body. We point out that because of similar resource requirements among plants of different sizes, a nonzero plant mass–density slope is primarily defined by structural mass. Specifically, the slope is a result of (i) the physical size-dependent relationship between stem width and height, (ii) foliage-dependent demands of conductance, and (iii) the cumulative nature of structural mass. The data support our model, both when the potential sampling bias of taxonomic relatedness is accounted for and when it is not. Independent contrasts analyses show that observed relationships among variables are not significantly different from the assumptions made to build the model or from its a priori predictions. We note that the dependence of the plant mass–density slope on the functions of structural mass provides a cause for the difference from the zero slope found in the animal population mass–density relationship; for the most part, animals do not have a comparable cumulative tissue type.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A fundamental goal of plant population ecology is to understand the consequences for plant fitness of seed dispersal by animals. Theories of seed dispersal and tropical forest regeneration suggest that the advantages of seed dispersal for most plants are escape from seed predation near the parent tree and colonization of vacant sites, the locations of which are unpredictable in space and time. Some plants may gain in fitness as a fortuitous consequence of disperser behavior if certain species of dispersers nonrandomly place seeds in sites predictably favorable for seedling establishment. Such patterns of directed dispersal by vertebrates long have been suggested but never demonstrated for tropical forest trees. Here we report the pattern of seed distribution and 1-year seedling survival generated by five species of birds for a neotropical, shade-tolerant tree. Four of the species dispersed seeds to sites near the parent trees with microhabitat characteristics similar to those at random locations, whereas the fifth species, a bellbird, predictably dispersed seeds under song perches in canopy gaps. The pattern of seedling recruitment was bimodal, with a peak near parent trees and a second peak, corresponding to bellbird song perches, far (>40 m) from parent trees. Seedling survival was higher for seeds dispersed by bellbirds than by the other species, because of a reduction in seedling mortality by fungal pathogens in gaps. Thus, bellbirds play a significant role in seed dispersal by providing directed dispersal to favorable sites and therefore may influence plant recruitment patterns and species diversity in Neotropical forests.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Explanations of self-thinning in plant populations have focused on plant shape and packing. A dynamic model based on the structure of local interactions successfully reproduces the pattern and can be approximated to identify key parameters and relationships. The approach generates testable new explanations for differences between species and populations, unifies self-thinning with other patterns in plant population dynamics, and indicates why organisms other than plants can follow the law.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Establishment of loss-of-function phenotypes is often a key step in determining the biological function of a gene. We describe a procedure to obtain mutant petunia plants in which a specific gene with known sequence is inactivated by the transposable element dTph1. Leaves are collected from batches of 1000 plants with highly active dTph1 elements, pooled according to a three-dimensional matrix, and screened by PCR using a transposon- and a gene-specific primer. In this way individual plants with a dTph1 insertion can be identified by analysis of about 30 PCRs. We found insertion alleles for various genes at a frequency of about 1 in 1000 plants. The plant population can be preserved by selfing all the plants, so that it can be screened for insertions in many genes over a prolonged period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examine the occurrence of the ≈300 known protein folds in different groups of organisms. To do this, we characterize a large fraction of the currently known protein sequences (≈140,000) in structural terms, by matching them to known structures via sequence comparison (or by secondary-structure class prediction for those without structural homologues). Overall, we find that an appreciable fraction of the known folds are present in each of the major groups of organisms (e.g., bacteria and eukaryotes share 156 of 275 folds), and most of the common folds are associated with many families of nonhomologous sequences (i.e., >10 sequence families for each common fold). However, different groups of organisms have characteristically distinct distributions of folds. So, for instance, some of the most common folds in vertebrates, such as globins or zinc fingers, are rare or absent in bacteria. Many of these differences in fold usage are biologically reasonable, such as the folds of metabolic enzymes being common in bacteria and those associated with extracellular transport and communication being common in animals. They also have important implications for database-based methods for fold recognition, suggesting that an unknown sequence from a plant is more likely to have a certain fold (e.g., a TIM barrel) than an unknown sequence from an animal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The snowshoe hare and the Canadian lynx in the boreal forests of North America show 9- to 11-year density cycles. These are generally assumed to be linked to each other because lynx are specialist predators on hares. Based on time series data for hare and lynx, we show that the dominant dimensional structure of the hare series appears to be three whereas that of the lynx is two. The three-dimensional structure of the hare time series is hypothesized to be due to a three-trophic level model in which the hare may be seen as simultaneously regulated from below and above. The plant species in the hare diet appear compensatory to one another, and the predator species may, likewise, be seen as an internally compensatory guild. The lynx time series are, in contrast, consistent with a model of donor control in which their populations are regulated from below by prey availability. Thus our analysis suggests that the classic view of a symmetric hare–lynx interaction is too simplistic. Specifically, we argue that the classic food chain structure is inappropriate: the hare is influenced by many predators other than the lynx, and the lynx is primarily influenced by the snowshoe hare.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We used Computer-Assisted Personalized Approach (CAPA), a networked teaching and learning tool that generates computer individualized homework problem sets, in our large-enrollment introductory plant physiology course. We saw significant improvement in student examination performance with regular homework assignments, with CAPA being an effective and efficient substitute for hand-graded homework. Using CAPA, each student received a printed set of similar but individualized problems of a conceptual (qualitative) and/or quantitative nature with quality graphics. Because each set of problems is unique, students were encouraged to work together to clarify concepts but were required to do their own work for credit. Students could enter answers multiple times without penalty, and they were able to obtain immediate feedback and hints until the due date. These features increased student time on task, allowing higher course standards and student achievement in a diverse student population. CAPA handles routine tasks such as grading, recording, summarizing, and posting grades. In anonymous surveys, students indicated an overwhelming preference for homework in CAPA format, citing several features such as immediate feedback, multiple tries, and on-line accessibility as reasons for their preference. We wrote and used more than 170 problems on 17 topics in introductory plant physiology, cataloging them in a computer library for general access. Representative problems are compared and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the beginning of modern plant biology, plant biologists followed a simple model for their science. This model included important branches of plant biology known then. Of course, plants had to be identified and classified first. Thus, there was much work on taxonomy, genetics, and physiology. Ecology and evolution were approached implicitly, rather than explicitly, through paleobotany, taxonomy, morphology, and historical geography. However, the burgeoning explosion of knowledge and great advances in molecular biology, e.g., to the extent that genes for specific traits can be added (or deleted) at will, have created a revolution in the study of plants. Genomics in agriculture has made it possible to address many important issues in crop production by the identification and manipulation of genes in crop plants. The current model of plant study differs from the previous one in that it places greater emphasis on developmental controls and on evolution by differential fitness. In a rapidly changing environment, the current model also explicitly considers the phenotypic variation among individuals on which selection operates. These are calls for the unity of science. In fact, the proponents of “Complexity Theory” think there are common algorithms describing all levels of organization, from atoms all the way to the structure of the universe, and that when these are discovered, the issue of scaling will be greatly simplified! Plant biology must seriously contribute to, among other things, meeting the nutritional needs of the human population. This challenge constitutes a key part of the backdrop against which future evolution will occur. Genetic engineering technologies are and will continue to be an important component of agriculture; however, we must consider the evolutionary implications of these new technologies. Meeting these demands requires drastic changes in the undergraduate curriculum. Students of biology should be trained in molecular, cellular, organismal, and ecosystem biology, including all living organisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyze the evolutionary dynamics of three of the best-studied plant nuclear multigene families. The data analyzed derive from the genes that encode the small subunit of ribulose-1,5-bisphosphate carboxylase (rbcS), the gene family that encodes the enzyme chalcone synthase (Chs), and the gene family that encodes alcohol dehydrogenases (Adh). In addition, we consider the limited evolutionary data available on plant transposable elements. New Chs and rbcS genes appear to be recruited at about 10 times the rate estimated for Adh genes, and this is correlated with a much smaller average gene family size for Adh genes. In addition, duplication and divergence in function appears to be relatively common for Chs genes in flowering plant evolution. Analyses of synonymous nucleotide substitution rates for Adh genes in monocots reject a linear relationship with clock time. Replacement substitution rates vary with time in a complex fashion, which suggests that adaptive evolution has played an important role in driving divergence following gene duplication events. Molecular population genetic studies of Adh and Chs genes reveal high levels of molecular diversity within species. These studies also reveal that inter- and intralocus recombination are important forces in the generation allelic novelties. Moreover, illegitimate recombination events appear to be an important factor in transposable element loss in plants. When we consider the recruitment and loss of new gene copies, the generation of allelic diversity within plant species, and ectopic exchange among transposable elements, we conclude that recombination is a pervasive force at all levels of plant evolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To feed a world population growing by up to 160 people per minute, with >90% of them in developing countries, will require an astonishing increase in food production. Forecasts call for wheat to become the most important cereal in the world, with maize close behind; together, these crops will account for ≈80% of developing countries’ cereal import requirements. Access to a range of genetic diversity is critical to the success of breeding programs. The global effort to assemble, document, and utilize these resources is enormous, and the genetic diversity in the collections is critical to the world’s fight against hunger. The introgression of genes that reduced plant height and increased disease and viral resistance in wheat provided the foundation for the “Green Revolution” and demonstrated the tremendous impact that genetic resources can have on production. Wheat hybrids and synthetics may provide the yield increases needed in the future. A wild relative of maize, Tripsacum, represents an untapped genetic resource for abiotic and biotic stress resistance and for apomixis, a trait that could provide developing world farmers access to hybrid technology. Ownership of genetic resources and genes must be resolved to ensure global access to these critical resources. The application of molecular and genetic engineering technologies enhances the use of genetic resources. The effective and complementary use of all of our technological tools and resources will be required for meeting the challenge posed by the world’s expanding demand for food.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The maize genome is replete with chromosomal duplications and repetitive DNA. The duplications resulted from an ancient polyploid event that occurred over 11 million years ago. Based on DNA sequence data, the polyploid event occurred after the divergence between sorghum and maize, and hence the polyploid event explains some of the difference in DNA content between these two species. Genomic rearrangement and diploidization followed the polyploid event. Most of the repetitive DNA in the maize genome is retrotransposable elements, and they comprise 50% of the genome. Retrotransposon multiplication has been relatively recent—within the last 5–6 million years—suggesting that the proliferation of retrotransposons has also contributed to differences in DNA content between sorghum and maize. There are still unanswered questions about repetitive DNA, including the distribution of repetitive DNA throughout the genome, the relative impacts of retrotransposons and chromosomal duplication in plant genome evolution, and the hypothesized correlation of duplication events with transposition. Population genetic processes also affect the evolution of genomes. We discuss how centromeric genes should, in theory, contain less genetic diversity than noncentromeric genes. In addition, studies of diversity in the wild relatives of maize indicate that different genes have different histories and also show that domestication and intensive breeding have had heterogeneous effects on genetic diversity across genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Early in the development of plant evolutionary biology, genetic drift, fluctuations in population size, and isolation were identified as critical processes that affect the course of evolution in plant species. Attempts to assess these processes in natural populations became possible only with the development of neutral genetic markers in the 1960s. More recently, the application of historically ordered neutral molecular variation (within the conceptual framework of coalescent theory) has allowed a reevaluation of these microevolutionary processes. Gene genealogies trace the evolutionary relationships among haplotypes (alleles) with populations. Processes such as selection, fluctuation in population size, and population substructuring affect the geographical and genealogical relationships among these alleles. Therefore, examination of these genealogical data can provide insights into the evolutionary history of a species. For example, studies of Arabidopsis thaliana have suggested that this species underwent rapid expansion, with populations showing little genetic differentiation. The new discipline of phylogeography examines the distribution of allele genealogies in an explicit geographical context. Phylogeographic studies of plants have documented the recolonization of European tree species from refugia subsequent to Pleistocene glaciation, and such studies have been instructive in understanding the origin and domestication of the crop cassava. Currently, several technical limitations hinder the widespread application of a genealogical approach to plant evolutionary studies. However, as these technical issues are solved, a genealogical approach holds great promise for understanding these previously elusive processes in plant evolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simple sequence repeats (SSRs), consisting of tandemly repeated multiple copies of mono-, di-, tri-, or tetranucleotide motifs, are ubiquitous in eukaryotic genomes and are frequently used as genetic markers, taking advantage of their length polymorphism. We have examined the polymorphism of such sequences in the chloroplast genomes of plants, by using a PCR-based assay. GenBank searches identified the presence of several (dA)n.(dT)n mononucleotide stretches in chloroplast genomes. A chloroplast (cp) SSR was identified in three pine species (Pinus contorta, Pinus sylvestris, and Pinus thunbergii) 312 bp upstream of the psbA gene. DNA amplification of this repeated region from 11 pine species identified nine length variants. The polymorphic amplified fragments were isolated and the DNA sequence was determined, confirming that the length polymorphism was caused by variation in the length of the repeated region. In the pines, the chloroplast genome is transmitted through pollen and this PCR assay may be used to monitor gene flow in this genus. Analysis of 305 individuals from seven populations of Pinus leucodermis Ant. revealed the presence of four variants with intrapopulational diversities ranging from 0.000 to 0.629 and an average of 0.320. Restriction fragment length polymorphism analysis of cpDNA on the same populations previously failed to detect any variation. Population subdivision based on cpSSR was higher (Gst = 0.22, where Gst is coefficient of gene differentiation) than that revealed in a previous isozyme study (Gst = 0.05). We anticipate that SSR loci within the chloroplast genome should provide a highly informative assay for the analysis of the genetic structure of plant populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method for isolating and cloning mRNA populations from individual cells in living, intact plant tissues is described. The contents of individual cells were aspirated into micropipette tips filled with RNA extraction buffer. The mRNA from these cells was purified by binding to oligo(dT)-linked magnetic beads and amplified on the beads using reverse transcription and PCR. The cell-specific nature of the isolated mRNA was verified by creating cDNA libraries from individual tomato leaf epidermal and guard cell mRNA preparations. In testing the reproducibility of the method, we discovered an inherent limitation of PCR amplification from small amounts of any complex template. This phenomenon, which we have termed the "Monte Carlo" effect, is created by small and random differences in amplification efficiency between individual templates in an amplifying cDNA population. The Monte Carlo effect is dependent upon template concentration: the lower the abundance of any template, the less likely its true abundance will be reflected in the amplified library. Quantitative assessment of the Monte Carlo effect revealed that only rare mRNAs (< or = 0.04% of polyadenylylated mRNA) exhibited significant variation in amplification at the single-cell level. The cDNA cloning approach we describe should be useful for a broad range of cell-specific biological applications.