2 resultados para Plant indicator species
em National Center for Biotechnology Information - NCBI
Resumo:
The explanation of patterns in species richness ranks among the most important tasks of ecology. Current theories emphasize the interaction between historical and geographical factors affecting the size of the regional species pool and of locally acting processes such as competitive exclusion, disturbance, productivity, and seasonality. Local species richness, or alpha diversity, of plants and primary consumers has been claimed to peak in habitats of low and intermediate productivity, which, if true, has major implications for conservation. Here, by contrast, we show that local richness of Neotropical primates (platyrrhines) is influenced by both historical biogeography and productivity but not by tree species richness or seasonality. This pattern indicates that habitats with the highest plant productivity are also the richest for many important primary consumers. We show further that fragmentation of Amazonian rain forests in the Pleistocene, if it occurred, appears to have had a negligible influence on primate alpha species richness.
Resumo:
Comparative genomics offers unparalleled opportunities to integrate historically distinct disciplines, to link disparate biological kingdoms, and to bridge basic and applied science. Cross-species, cross-genera, and cross-kingdom comparisons are proving key to understanding how genes are structured, how gene structure relates to gene function, and how changes in DNA have given rise to the biological diversity on the planet. The application of genomics to the study of crop species offers special opportunities for innovative approaches for combining sequence information with the vast reservoirs of historical information associated with crops and their evolution. The grasses provide a particularly well developed system for the development of tools to facilitate comparative genetic interpretation among members of a diverse and evolutionarily successful family. Rice provides advantages for genomic sequencing because of its small genome and its diploid nature, whereas each of the other grasses provides complementary genetic information that will help extract meaning from the sequence data. Because of the importance of the cereals to the human food chain, developments in this area can lead directly to opportunities for improving the health and productivity of our food systems and for promoting the sustainable use of natural resources.