4 resultados para Pisces (fossil)
em National Center for Biotechnology Information - NCBI
Resumo:
Molecular and morphological data have important roles in illuminating evolutionary history. DNA data often yield well resolved phylogenies for living taxa, but are generally unattainable for fossils. A distinct advantage of morphology is that some types of morphological data may be collected for extinct and extant taxa. Fossils provide a unique window on evolutionary history and may preserve combinations of primitive and derived characters that are not found in extant taxa. Given their unique character complexes, fossils are critical in documenting sequences of character transformation over geologic time and may elucidate otherwise ambiguous patterns of evolution that are not revealed by molecular data alone. Here, we employ a methodological approach that allows for the integration of molecular and paleontological data in deciphering one of the most innovative features in the evolutionary history of mammals—laryngeal echolocation in bats. Molecular data alone, including an expanded data set that includes new sequences for the A2AB gene, suggest that microbats are paraphyletic but do not resolve whether laryngeal echolocation evolved independently in different microbat lineages or evolved in the common ancestor of bats and was subsequently lost in megabats. When scaffolds from molecular phylogenies are incorporated into parsimony analyses of morphological characters, including morphological characters for the Eocene taxa Icaronycteris, Archaeonycteris, Hassianycteris, and Palaeochiropteryx, the resulting trees suggest that laryngeal echolocation evolved in the common ancestor of fossil and extant bats and was subsequently lost in megabats. Molecular dating suggests that crown-group bats last shared a common ancestor 52 to 54 million years ago.
Resumo:
Angiosperm paleobotany has widened its horizons, incorporated new techniques, developed new databases, and accepted new questions that can now focus on the evolution of the group. The fossil record of early flowering plants is now playing an active role in addressing questions of angiosperm phylogeny, angiosperm origins, and angiosperm radiations. Three basic nodes of angiosperm radiations are identified: (i) the closed carpel and showy radially symmetrical flower, (ii) the bilateral flower, and (iii) fleshy fruits and nutritious nuts and seeds. These are all coevolutionary events and spread out through time during angiosperm evolution. The proposal is made that the genetics of the angiosperms pressured the evolution of the group toward reproductive systems that favored outcrossing. This resulted in the strongest selection in the angiosperms being directed toward the flower, fruits, and seeds. That is why these organs often provide the best systematic characters for the group.
Resumo:
DNA was extracted from the extinct American mastodon, the extinct woolly mammoth, and the modern Asian and African elephants to test the traditional morphologically based phylogeny within Elephantidae. Phylogenetic analyses of the aligned sequences of the mitochondrial gene cytochrome b support a monophyletic Asian elephant-woolly mammoth clade when the American mastodon is used as an outgroup. Previous molecular studies were unable to resolve the relationships of the woolly mammoth, Asian elephant, and African elephant because the sequences appear to have evolved at heterogeneous rates and inappropriate outgroups were used for analysis. The results demonstrate the usefulness of fossil molecular data from appropriate sister taxa for resolving phylogenies of highly derived or early radiating lineages.
Resumo:
Genetic surveys of parthenogenetic vertebrate populations have demonstrated a common pattern of relatively high degrees of clonal variation and the coexistence of numerous clones. In striking contrast, the Phoxinus eos/Phoxinus neogaeus/hybrid gynogen complex of cyprinid fishes exhibits no clonal variation within a northern Minnesota drainage characterized by successional beaver ponds. Gynogens were sampled from three habitats in each of four different pond types in a single drainage in Voyageurs National Park, Minnesota. The abundance of gynogens relative to sexual dace varied with pond type, being least common in deep upland ponds and most common in shallow, collapsed, lowland ponds (13.4% and 48.6%, respectively). Simple-sequence multilocus DNA fingerprinting of 464 individual gynogens detected one, and only one, clone. DNA fingerprints, generated sequentially by using three oligonucleotide probes, (CAC)5, (GACA)4, and the Jeffreys' 33.15 probe, all revealed the same unprecedented lack of variation. The extreme lack of clonal diversity in these gynogens across a range of habitat types does not fit the general pattern of high clonal diversity found within populations of other vertebrate parthenogens.