3 resultados para Pineau

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recolonization of Europe by forest tree species after the last glaciation is well documented in the fossil pollen record. This spread may have been achieved at low densities by rare events of long-distance dispersal, rather than by a compact wave of advance, generating a patchy genetic structure through founder effects. In long-lived oak species, this structure could still be discernible by using maternally transmitted genetic markers. To test this hypothesis, a fine-scale study of chloroplast DNA (cpDNA) variability of two sympatric oak species was carried out in western France. The distributions of six cpDNA length variants were analyzed at 188 localities over a 200 × 300 km area. A cpDNA map was obtained by applying geostatistics methods to the complete data set. Patches of several hundred square kilometers exist which are virtually fixed for a single haplotype for both oak species. This local systematic interspecific sharing of the maternal genome strongly suggests that long-distance seed dispersal events followed by interspecific exchanges were involved at the time of colonization, about 10,000 years ago.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CYP1B1-null mice, created by targeted gene disruption in embryonic stem cells, were born at the expected frequency from heterozygous matings with no observable phenotype, thus establishing that CYP1B1 is not required for mouse development. CYP1B1 was not detectable in cultured embryonic fibroblast (EF) or in different tissues, such as lung, of the CYP1B1-null mouse treated with the aryl hydrocarbon receptor agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin whereas the equivalent wild-type EF cells express basal and substantial inducible CYP1B1 and lung expresses inducible CYP1B1. CYP1A1 is induced to far higher levels than CYP1B1 in liver, kidney, and lung in wild-type mice and is induced to a similar extent in CYP1B1-null mice. 7,12-dimethylbenz[a]anthracene (DMBA) was toxic in wild-type EFs that express CYP1B1 but not CYP1A1. These cells effectively metabolized DMBA, consistent with CYP1B1 involvement in producing the procarcinogenic 3,4-dihydrodiol as a major metabolite, whereas CYP1B1-null EF showed no significant metabolism and were resistant to DMBA-mediated toxicity. When wild-type mice were administered high levels of DMBA intragastrically, 70% developed highly malignant lymphomas whereas only 7.5% of CYP1B1-null mice had lymphomas. Skin hyperplasia and tumors were also more frequent in wild-type mice. These results establish that CYP1B1, located exclusively at extrahepatic sites, mediates the carcinogenicity of DMBA. Surprisingly, CYP1A1, which has a high rate of DMBA metabolism in vitro, is not sufficient for this carcinogenesis, which demonstrates the importance of extrahepatic P450s in determining susceptibility to chemical carcinogens and validates the search for associations between P450 expression and cancer risk in humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cytochrome P450 1A2 (CYP1A2) is a constitutively expressed hepatic enzyme that is highly conserved among mammals. This protein is primarily involved in oxidative metabolism of xenobiotics and is capable of metabolically activating numerous procarcinogens including aflatoxin B1, arylamines, heterocyclic amine food mutagens, and polycylic aromatic hydrocarbons. Expression of CYP1A2 is induced after exposure to certain aromatic hydrocarbons (i.e., 2,3,7,8-tetrachlorodibenzo-p-dioxin). Direct evidence for a role of CYP1A2 in any physiological or developmental pathway has not been documented. We now demonstrate that mice homozygous for a targeted mutation in the Cyp1a-2 gene are nonviable. Lethality occurs shortly after birth with symptoms of severe respiratory distress. Mutant neonates display impaired respiratory function associated with histological signs of lung immaturity, lack of air in alveoli at birth, and changes in expression of surfactant apoprotein in alveolar type II cells. The penetrance of the phenotype is not complete (19 mutants survived to adulthood out of 599 mice). Surviving animals, although lacking expression of CYP1A2, appear to be normal and are able to reproduce. These findings establish that CYP1A2 is critical for neonatal survival by influencing the physiology of respiration in neonates, thus offering etiological insights for neonatal respiratory distress syndrome.