9 resultados para Piirainen-Marsh, Arja: Face in second language interaction
em National Center for Biotechnology Information - NCBI
Resumo:
There is extensive evidence that the amygdala is involved in affectively influenced memory. The central hypothesis guiding the research reviewed in this paper is that emotional arousal activates the amygdala and that such activation results in the modulation of memory storage occurring in other brain regions. Several lines of evidence support this view. First, the effects of stress-related hormones (epinephrine and glucocorticoids) are mediated by influences involving the amygdala. In rats, lesions of the amygdala and the stria terminalis block the effects of posttraining administration of epinephrine and glucocorticoids on memory. Furthermore, memory is enhanced by posttraining intra-amygdala infusions of drugs that activate β-adrenergic and glucocorticoid receptors. Additionally, infusion of β-adrenergic blockers into the amygdala blocks the memory-modulating effects of epinephrine and glucocorticoids, as well as those of drugs affecting opiate and GABAergic systems. Second, an intact amygdala is not required for expression of retention. Inactivation of the amygdala prior to retention testing (by posttraining lesions or drug infusions) does not block retention performance. Third, findings of studies using human subjects are consistent with those of animal experiments. β-Blockers and amygdala lesions attenuate the effects of emotional arousal on memory. Additionally, 3-week recall of emotional material is highly correlated with positron-emission tomography activation (cerebral glucose metabolism) of the right amygdala during encoding. These findings provide strong evidence supporting the hypothesis that the amygdala is involved in modulating long-term memory storage.
Resumo:
I measured the strength of interaction between a marine herbivore and its growing resource over a realistic range of absolute and relative abundances. The herbivores (hermit crabs: Pagurus spp.) have slow and/or weak functional and numerical responses to epiphytic diatoms (Isthmia nervosa), which show logistic growth in the absence of consumers. By isolating this interaction in containers in the field, I mimicked many of the physical and biological variables characteristic of the intertidal while controlling the densities of focal species. The per capita effects of consumers on the population dynamics of their resource (i.e., interaction strength) were defined by using the relationship between hermit crab density and proportional change in the resource. When this relationship is fit by a Weibull function, a single parameter distinguishes constant interaction strength from one that varies as a function of density. Constant interaction strength causes the proportion of diatoms to fall linearly or proportionally as hermit crab density increases whereas per capita effects that increase with density cause an accelerating decline. Although many mathematical models of species interactions assume linear dynamics and invariant parameters, at least near equilibrium, the per capita effects of hermit crabs on diatoms varied substantially, apparently crossing a threshold from weak to strong when consumption exceeded resource production. This threshold separates a domain of coexistence from one of local extinction of the resource. Such thresholds may help explain trophic cascades, resource compensation, and context-dependent interaction strengths, while indicating a way to predict trophic effects, despite nonlinearities, as a function of vital rates.
Resumo:
Transcriptional activation domains share little sequence homology and generally lack folded structures in the absence of their targets, aspects that have rendered activation domains difficult to characterize. Here, a combination of biochemical and nuclear magnetic resonance experiments demonstrates that the activation domain of the tumor suppressor p53 has an FXXΦΦ motif (F, Phe; X, any amino acids; Φ, hydrophobic residues) that folds into an α-helix upon binding to one of its targets, hTAFII31 (a human TFIID TATA box-binding protein-associated factor). MDM2, the cellular attenuator of p53, discriminates the FXXΦΦ motif of p53 from those of NF-κB p65 and VP16 and specifically inhibits p53 activity. Our studies support the notion that the FXXΦΦ sequence is a general α-helical recognition motif for hTAFII31 and provide insights into the mechanistic basis for regulation of p53 function.
Resumo:
Evernimicin (Evn), an oligosaccharide antibiotic, interacts with the large ribosomal subunit and inhibits bacterial protein synthesis. RNA probing demonstrated that the drug protects a specific set of nucleotides in the loops of hairpins 89 and 91 of 23S rRNA in bacterial and archaeal ribosomes. Spontaneous Evn-resistant mutants of Halobacterium halobium contained mutations in hairpins 89 and 91 of 23S rRNA. In the ribosome tertiary structure, rRNA residues involved in interaction with the drug form a tight cluster that delineates the drug-binding site. Resistance mutations in the bacterial ribosomal protein L16, which is shown to be homologous to archaeal protein L10e, cluster to the same region as the rRNA mutations. The Evn-binding site overlaps with the binding site of initiation factor 2. Evn inhibits activity of initiation factor 2 in vitro, suggesting that the drug interferes with formation of the 70S initiation complex. The site of Evn binding and its mode of action are distinct from other ribosome-targeted antibiotics. This antibiotic target site can potentially be used for the development of new antibacterial drugs.
Resumo:
The field of natural language processing (NLP) has seen a dramatic shift in both research direction and methodology in the past several years. In the past, most work in computational linguistics tended to focus on purely symbolic methods. Recently, more and more work is shifting toward hybrid methods that combine new empirical corpus-based methods, including the use of probabilistic and information-theoretic techniques, with traditional symbolic methods. This work is made possible by the recent availability of linguistic databases that add rich linguistic annotation to corpora of natural language text. Already, these methods have led to a dramatic improvement in the performance of a variety of NLP systems with similar improvement likely in the coming years. This paper focuses on these trends, surveying in particular three areas of recent progress: part-of-speech tagging, stochastic parsing, and lexical semantics.
Platelets roll on stimulated endothelium in vivo: an interaction mediated by endothelial P-selectin.
Resumo:
P-selectin, found in storage granules of platelets and endothelial cells, can be rapidly expressed upon stimulation. Mice lacking this membrane receptor exhibit a severe impairment of leukocyte rolling. We observed that, in addition to leukocytes, platelets were rolling in mesenteric venules of wild-type mice. To investigate the role of P-selectin in this process, resting or activated platelets from wild-type or P-selectin-deficient mice were fluorescently labeled and transfused into recipients of either genotype. Platelet-endothelial interactions were monitored by intravital microscopy. We observed rolling of either wild-type or P-selectin-deficient resting platelets on wild-type endothelium. Endothelial stimulation with the calcium ionophore A23187 increased the number of platelets rolling 4-fold. Activated P-selectin-deficient platelets behaved similarly, whereas activated wild-type platelets bound to leukocytes and were seen rolling together. Platelets of either genotype, resting or activated, interacted minimally with mutant endothelium even after A23187 treatment. The velocity of platelet rolling was 6- to 9-fold greater than that of leukocytes. Our results demonstrate that (i) platelets roll on endothelium in vivo, (ii) this interaction requires endothelial but not platelet P-selectin, and (iii) platelet rolling appears to be independent of platelet activation, indicating constitutive expression of a P-selectin ligand(s) on platelets. We have therefore observed an interesting parallel between platelets and leukocytes in that both of these blood cell types roll on stimulated vessel wall and that this process is dependent on the expression of endothelial P-selectin.
Resumo:
Interaction between a peptide hormone and extracellular domains of its receptor is a crucial step for initiation of hormone action. We have developed a modification of the yeast two-hybrid system to study this interaction and have used it to characterize the interaction of insulin-like growth factor 1 (IGF-1) with its receptor by using GAL4 transcriptional regulation with a β-galactosidase assay as readout. In this system, IGF-1 and proIGF-1 bound to the cysteine-rich domain, extracellular domain, or entire IGF-1 proreceptor. This interaction was specific. Thus, proinsulin showed no significant interaction with the IGF-1 receptor, while a chimeric proinsulin containing the C-peptide of IGF-1 had an intermediate interaction, consistent with its affinity for the IGF-1 receptor. Over 2000 IGF-1 mutants were generated by PCR and screened for interaction with the color assay. About 40% showed a strong interaction, 20% showed an intermediate interaction, and 40% give little or no signal. Of 50 mutants that were sequenced, several (Leu-5 → His, Glu-9 → Val, Arg-37 → Gly, and Met-59 → Leu) appeared to enhance receptor association, others resulted in weaker receptor interaction (Tyr-31 → Phe and Ile-43 → Phe), and two gave no detectable signal (Leu-14 → Arg and Glu-46 → Ala). Using PCR-based mutagenesis with proinsulin, we also identified a gain of function mutant (proinsulin Leu-17 → Pro) that allowed for a strong IGF-1–receptor interaction. These data demonstrate that the specificity of the interaction between a hormone and its receptor can be characterized with high efficiency in the two-hybrid system and that novel hormone analogues may be found by this method.
Resumo:
The herpesvirus entry mediator C (HveC), previously known as poliovirus receptor-related protein 1 (PRR1), and the herpesvirus Ig-like receptor (HIgR) are the bona fide receptors employed by herpes simplex virus-1 and -2 (HSV-1 and -2) for entry into the human cell lines most frequently used in HSV studies. They share an identical ectodomain made of one V and two C2 domains and differ in transmembrane and cytoplasmic regions. Expression of their mRNA in the human nervous system suggests possible usage of these receptors in humans in the path of neuron infection by HSV. Glycoprotein D (gD) is the virion component that mediates HSV-1 entry into cells by interaction with cellular receptors. We report on the identification of the V domain of HIgR/PRR1 as a major functional region in HSV-1 entry by several approaches. First, the epitope recognized by mAb R1.302 to HIgR/PRR1, capable of inhibiting infection, was mapped to the V domain. Second, a soluble form of HIgR/PRR1 consisting of the single V domain competed with cell-bound full-length receptor and blocked virion infectivity. Third, the V domain was sufficient to mediate HSV entry, as an engineered form of PRR1 in which the two C2 domains were deleted and the V domain was retained and fused to its transmembrane and cytoplasmic regions was still able to confer susceptibility, although at reduced efficiency relative to full-length receptor. Consistently, transfer of the V domain of HIgR/PRR1 to a functionally inactive structural homologue generated a chimeric receptor with virus-entry activity. Finally, the single V domain was sufficient for in vitro physical interaction with gD. The in vitro binding was specific as it was competed both by antibodies to the receptor and by a mAb to gD with potent neutralizing activity for HSV-1 infectivity.
Resumo:
In a previous study we showed that the murine homeodomain protein Msx-1 is a potent transcriptional repressor and that this activity is independent of its DNA binding function. The implication of these findings is that repression by Msx-1 is mediated through its association with certain protein factors rather than through its interaction with DNA recognition sites, which prompted investigation of the relevant protein factors. Here we show that Msx-1 interacts directly with the TATA binding protein (TBP) but not with several other general transcription factors. This interaction is mediated by the Msx-1 homeodomain, specifically through residues in the N-terminal arm. These same N-terminal arm residues are required for repression by Msx-1, suggesting a functional relationship between TBP association and transcriptional repression. This is further supported by the observation that addition of excess TBP blocks the repressor action of Msx-1 in in vitro transcription assays. Finally, DNA binding activity is separable from both TBP interaction and repression, which further shows that these other activities of the Msx-1 homeodomain are distinct. Therefore, these findings define a role for the Msx-1 homeodomain, particularly the N-terminal arm residues in protein-protein interaction and transcriptional repression, and implicate a more complex role overall for homeodomains in transcriptional regulation.