8 resultados para Photoexcitation spectra

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations are introduced into rearranged Ig variable genes at a frequency of 10−2 mutations per base pair by an unknown mechanism. Assuming that DNA repair pathways generate or remove mutations, the frequency and pattern of mutation will be different in variable genes from mice defective in repair. Therefore, hypermutation was studied in mice deficient for either the DNA nucleotide excision repair gene Xpa or the mismatch repair gene Pms2. High levels of mutation were found in variable genes from XPA-deficient and PMS2-deficient mice, indicating that neither nucleotide excision repair nor mismatch repair pathways generate hypermutation. However, variable genes from PMS2-deficient mice had significantly more adjacent base substitutions than genes from wild-type or XPA-deficient mice. By using a biochemical assay, we confirmed that tandem mispairs were repaired by wild-type cells but not by Pms2−/− human or murine cells. The data indicate that tandem substitutions are produced by the hypermutation mechanism and then processed by a PMS2-dependent pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary events in the all-trans to 13-cis photoisomerization of retinal in bacteriorhodopsin have been investigated with femtosecond time-resolved absorbance spectroscopy. Spectra measured over a broad range extending from 7000 to 22,400 cm−1 reveal features whose dynamics are inconsistent with a model proposed earlier to account for the highly efficient photoisomerization process. Emerging from this work is a new three-state model. Photoexcitation of retinal with visible light accesses a shallow well on the excited state potential energy surface. This well is bounded by a small barrier, arising from an avoided crossing that separates the Franck–Condon region from the nearby reactive region of the photoisomerization coordinate. At ambient temperatures, the reactive region is accessed with a time constant of ≈500 fs, whereupon the retinal rapidly twists and encounters a second avoided crossing region. The protein mediates the passage into the second avoided crossing region and thereby exerts control over the quantum yield for forming 13-cis retinal. The driving force for photoisomerization resides in the retinal, not in the surrounding protein. This view contrasts with an earlier model where photoexcitation was thought to access directly a reactive region of the excited-state potential and thereby drive the retinal to a twisted conformation within 100–200 fs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Somatic mutation accumulation has been implicated as a major cause of cancer and aging. By using a transgenic mouse model with a chromosomally integrated lacZ reporter gene, mutational spectra were characterized at young and old age in two organs greatly differing in proliferative activity, i.e., the heart and small intestine. At young age the spectra were nearly identical, mainly consisting of G·C to A·T transitions and 1-bp deletions. At old age, however, distinct patterns of mutations had developed. In small intestine, only point mutations were found to accumulate, including G·C to T·A, G·C to C·G, and A·T to C·G transversions and G·C to A·T transitions. In contrast, in heart about half of the accumulated mutations appeared to be large genome rearrangements, involving up to 34 centimorgans of chromosomal DNA. Virtually all other mutations accumulating in the heart appeared to be G·C to A·T transitions at CpG sites. These results suggest that distinct mechanisms lead to organ-specific genome deterioration and dysfunction at old age.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have found that human organs such as colon, lung, and muscle, as well as their derived tumors, share nearly all mitochondrial hotspot point mutations. Seventeen hotspots, primarily G → A and A → G transitions, have been identified in the mitochondrial sequence of base pairs 10,030–10,130. Mutant fractions increase with the number of cell generations in a human B cell line, TK6, indicating that they are heritable changes. The mitochondrial point mutation rate appears to be more than two orders of magnitude higher than the nuclear point mutation rate in TK6 cells and in human tissues. The similarity of the hotspot sets in vivo and in vitro leads us to conclude that human mitochondrial point mutations in the sequence studied are primarily spontaneous in origin and arise either from DNA replication error or reactions of DNA with endogenous metabolites. The predominance of transition mutations and the high number of hotspots in this short sequence resembles spectra produced by DNA polymerases in vitro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have examined the seed germination in Arabidopsis thaliana of wild type (wt), and phytochrome A (PhyA)- and B (PhyB)-mutants in terms of incubation time and environmental light effects. Seed germination of the wt and PhyA-null mutant (phyA) was photoreversibly regulated by red and far-red lights of 10-1,000 micromol m-2 when incubated in darkness for 1-14 hr, but no germination occurred in PhyB-null mutant (phyB). When wt seeds and the phyB mutant seeds were incubated in darkness for 48 hr, they synthesized PhyA during dark incubation and germinated upon exposure to red light of 1-100 nmol m-2 and far-red light of 0.5-10 micromol m-2, whereas the phyA mutant showed no such response. The results indicate that the seed germination is regulated by PhyA and PhyB but not by other phytochromes, and the effects of PhyA and PhyB are separable in this assay. We determined action spectra separately for PhyA- and PhyB-specific induction of seed germination at Okazaki large spectrograph. Action spectra for the PhyA response show that monochromatic 300-780 nm lights of very low fluence induced the germination, and this induction was not photoreversible in the range examined. Action spectra for the PhyB response show that germination was photoreversibly regulated by alternate irradiations with light of 0.01-1 mmol m-2 at wavelengths of 540-690 nm and 695-780 nm. The present work clearly demonstrated that PhyA photoirreversibly triggers the germination upon irradiations with ultraviolet, visible and far-red light of very low fluence, while PhyB controls the photoreversible effects of low fluence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lasers emitting in the ultraviolet wavelength range of 260-360 nm are almost exclusively used for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of macromolecules. Reports about the use of lasers emitting in the infrared first appeared in 1990/1991. In contrast to MALDI in the ultraviolet, a very limited number of reports on IR-MALDI have since been published. Several matrices have been identified for infrared MALDI yielding spectra of a quality comparable to those obtained in the ultraviolet. Water (ice) was recognized early as a potential matrix because of its strong O-H stretching mode near 3 microm. Interest in water as matrix derives primarily from the fact that it is the major constituent of most biological tissues. If functional as matrix, it might allow the in situ analysis of macromolecular constituents in frozen cell sections without extraction or exchanging the water. We present results that show that IR-MALDI of lyophilized proteins, air dried protein solutions, or protein crystals up to a molecular mass of 30 kDa is possible without the addition of any separate matrix. Samples must be frozen to retain a sufficient fraction of the water of hydration in the vacuum. The limited current sensitivity, requiring at least 10 pmol of protein for a successful analysis needs to be further improved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluorescence spectroscopy was used to characterize blue light responses from chloroplasts of adaxial guard cells from Pima cotton (Gossypium barbadense) and coleoptile tips from corn (Zea mays). The chloroplast response to blue light was quantified by measurements of the blue light-induced enhancement of a red light-stimulated quenching of chlorophyll a fluorescence. In adaxial (upper) guard cells, low fluence rates of blue light applied under saturating fluence rates of red light enhanced the red light-stimulated fluorescence quenching by up to 50%. In contrast, added blue light did not alter the red light-stimulated quenching from abaxial (lower) guard cells. This response pattern paralleled the blue light sensitivity of stomatal opening in the two leaf surfaces. An action spectrum for the blue light-induced enhancement of the red light-stimulated quenching showed a major peak at 450 nm and two minor peaks at 420 and 470 nm. This spectrum matched closely an action spectrum for blue light-stimulated stomatal opening. Coleoptile chloroplasts also showed an enhancement by blue light of red light-stimulated quenching. The action spectrum of this response, showing a major peak at 450 nm, a minor peak at 470 nm, and a shoulder at 430 nm, closely matched an action spectrum for blue light-stimulated coleoptile phototropism. Both action spectra match the absorption spectrum of zeaxanthin, a chloroplastic carotenoid recently implicated in blue light photoreception of both guard cells and coleoptiles. The remarkable similarity between the action spectra for the blue light responses of guard cells and coleoptile chloroplasts and the spectra for blue light-stimulated stomatal opening and phototropism, coupled to the recently reported evidence on a role of zeaxanthin in blue light photoreception, indicates that the guard cell and coleoptile chloroplasts specialize in sensory transduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic structure and spectrum of several models of the binuclear metal site in soluble CuA domains of cytochrome-c oxidase have been calculated by the use of an extended version of the complete neglect of differential overlap/spectroscopic method. The experimental spectra have two strong transitions of nearly equal intensity around 500 nm and a near-IR transition close to 800 nm. The model that best reproduces these features consists of a dimer of two blue (type 1) copper centers, in which each Cu atom replaces the missing imidazole on the other Cu atom. Thus, both Cu atoms have one cysteine sulfur atom and one imidazole nitrogen atom as ligands, and there are no bridging ligands but a direct Cu-Cu bond. According to the calculations, the two strong bands in the visible region originate from exciton coupling of the dipoles of the two copper monomers, and the near-IR band is a charge-transfer transition between the two Cu atoms. The known amino acid sequence has been used to construct a molecular model of the CuA site by the use of a template and energy minimization. In this model, the two ligand cysteine residues are in one turn of an alpha-helix, whereas one ligand histidine is in a loop following this helix and the other one is in a beta-strand.