3 resultados para Phosphine-Alkene Zwitterion

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have used Mössbauer and electron paramagnetic resonance (EPR) spectroscopy to study a heme-N-alkylated derivative of chloroperoxidase (CPO) prepared by mechanism-based inactivation with allylbenzene and hydrogen peroxide. The freshly prepared inactivated enzyme (“green CPO”) displayed a nearly pure low-spin ferric EPR signal with g = 1.94, 2.15, 2.31. The Mössbauer spectrum of the same species recorded at 4.2 K showed magnetic hyperfine splittings, which could be simulated in terms of a spin Hamiltonian with a complete set of hyperfine parameters in the slow spin fluctuation limit. The EPR spectrum of green CPO was simulated using a three-term crystal field model including g-strain. The best-fit parameters implied a very strong octahedral field in which the three 2T2 levels of the (3d)5 configuration in green CPO were lowest in energy, followed by a quartet. In native CPO, the 6A1 states follow the 2T2 ground state doublet. The alkene-mediated inactivation of CPO is spontaneously reversible. Warming of a sample of green CPO to 22°C for increasing times before freezing revealed slow conversion of the novel EPR species to two further spin S = ½ ferric species. One of these species displayed g = 1.82, 2.25, 2.60 indistinguishable from native CPO. By subtracting spectral components due to native and green CPO, a third species with g = 1.86, 2.24, 2.50 could be generated. The EPR spectrum of this “quasi-native CPO,” which appears at intermediate times during the reactivation, was simulated using best-fit parameters similar to those used for native CPO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The incorporation of potentially catalytic groups in DNA is of interest for the in vitro selection of novel deoxyribozymes. A series of 10 C5-modified analogues of 2′-deoxyuridine triphosphate have been synthesised that possess side chains of differing flexibility and bearing a primary amino or imidazole functionality. For each series of nucleotide analogues differing degrees of flexibility of the C5 side chain was achieved through the use of alkynyl, alkenyl and alkyl moieties. The imidazole function was conjugated to these C5-amino-modified nucleotides using either imidazole 4-acetic acid or imidazole 4-acrylic acid (urocanic acid). The substrate properties of the nucleotides (fully replacing dTTP) with Taq polymerase during PCR have been investigated in order to evaluate their potential applications for in vitro selection experiments. 5-(3-Aminopropynyl)dUTP and 5-(E-3-aminopropenyl)dUTP and their imidazole 4-acetic acid- and urocanic acid-modified conjugates were found to be substrates. In contrast, C5-amino-modified dUTPs with alkane or Z-alkene linkers and their corresponding conjugates were not substrates. The incorporation of these analogues during PCR has been confirmed by inhibition of restriction enzyme digestion using XbaI and by mass spectrometry of the PCR products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The disulfide bonding pattern of the fourth and fifth epidermal growth factor (EGF)-like domains within the smallest active fragment of thrombomodulin have been determined. In previous work, this fragment was expressed and purified to homogeneity, and its cofactor activity, as measured by Kcat for thrombin activation of protein C, was the same as that for full-length thrombomodulin. CNBr cleavage at the single methionine in the connecting region between the domains and subsequent deglycosylation yielded the individual EGF-like domains. The disulfide bonds were mapped by partial reduction with tris(2-carboxyethyl)phosphine according to the method of Gray [Gray, W. R. (1993) Protein Sci. 2, 1732-1748], which provides unambiguous results. The disulfide bonding pattern of the fourth EGF-like domain was (1-3, 2-4, 5-6), which is the same as that found previously in EGF and in a synthetic version of the fourth EGF-like domain. Surprisingly, the disulfide bonding pattern of the fifth domain was (1-2, 3-4, 5-6), which is unlike that found in EGF or in any other EGF-like domain analyzed so far. This result is in line with an earlier observation that the (1-2, 3-4, 5-6) isomer bound to thrombin more tightly than the EGF-like (1-3, 2-4, 5-6) isomer. The observation that not all EGF-like domains have an EGF-like disulfide bonding pattern reveals an additional element of diversity in the structure of EGF-like domains.