4 resultados para Philander opossum
em National Center for Biotechnology Information - NCBI
Resumo:
Phosphorylation of the α-subunit of Na+,K+-ATPase plays an important role in the regulation of this pump. Recent studies suggest that insulin, known to increase solute and fluid reabsorption in mammalian proximal convoluted tubule (PCT), is stimulating Na+,K+-ATPase activity through the tyrosine phosphorylation process. This study was therefore undertaken to evaluate the role of tyrosine phosphorylation of the Na+,K+-ATPase α-subunit in the action of insulin. In rat PCT, insulin and orthovanadate (a tyrosine phosphatase inhibitor) increased tyrosine phosphorylation level of the α-subunit more than twofold. Their effects were not additive, suggesting a common mechanism of action. Insulin-induced tyrosine phosphorylation was prevented by genistein, a tyrosine kinase inhibitor. The site of tyrosine phosphorylation was identified on Tyr-10 by controlled trypsinolysis in rat PCTs and by site-directed mutagenesis in opossum kidney cells transfected with rat α-subunit. The functional relevance of Tyr-10 phosphorylation was assessed by 1) the abolition of insulin-induced stimulation of the ouabain-sensitive 86Rb uptake in opossum kidney cells expressing mutant rat α1-subunits wherein tyrosine was replaced by alanine or glutamine; and 2) the similarity of the time course and dose dependency of the insulin-induced increase in ouabain-sensitive 86Rb uptake and tyrosine phosphorylation. These findings indicate that phosphorylation of the Na+,K+-ATPase α-subunit at Tyr-10 likely participates in the physiological control of sodium reabsorption in PCT.
Resumo:
We have previously shown that human munc13 (hmunc13) is up-regulated by hyperglycemia under in vitro conditions in human mesangial cell cultures. The purpose of the present study was to determine the cellular function of hmunc13. To do this, we have investigated the subcellular localization of hmunc13 in a transiently transfected renal cell line, opossum kidney cells. We have found that hmunc13 is a cytoplasmic protein and is translocated to the Golgi apparatus after phorbol ester stimulation. In addition, cells transfected with hmunc13 demonstrate apoptosis after treatment with phorbol ester, but cells transfected with an hmunc13 deletion mutant in which the diacylglycerol (C1) binding domain is absent exhibit no change in intracellular distribution and no induction of apoptosis in the presence of phorbol ester stimulation. We conclude that both the diacylglycerol-induced translocation and the apoptosis represent functional activity of hmunc13. We have also demonstrated that munc13-1 and munc13-2 are localized mainly to cortical epithelial cells in rat kidney and both are overexpressed under conditions of hyperglycemia in a streptozotocin-treated diabetic rat model. Taken together, our data suggest that hmunc13 serves as a diacylglycerol-activated, PKC-independent signaling pathway capable of inducing apoptosis and that this pathway may contribute to the renal cell complications of hyperglycemia.
Resumo:
Neurite outgrowth across spinal cord lesions in vitro is rapid in preparations isolated from the neonatal opossum Monodelphis domestica up to the age of 12 days. At this age oligodendrocytes, myelin, and astrocytes develop and regeneration ceases to occur. The role of myelin-associated neurite growth-inhibitory proteins, which increase in concentration at 10-13 days, was investigated in culture by applying the antibody IN-1, which blocks their effects. In the presence of IN-1, 22 out of 39 preparations from animals aged 13-17 days showed clear outgrowth of processes into crushes. When 34 preparations from 13-day-old animals were crushed and cultured without antibody, no axons grew into the lesion. The success rate with IN-1 was comparable to that seen in younger animals but the outgrowth was less profuse. IN-1 was shown by immunocytochemistry to penetrate the spinal cord. Other antibodies which penetrated the 13-day cord failed to promote fiber outgrowth. To distinguish between regeneration by cut neurites and outgrowth by developing uncut neurites, fibers in the ventral fasciculus were prelabeled with carbocyanine dyes and subsequently injured. The presence of labeled fibers in the lesion indicated that IN-1 promoted regeneration. These results show that the development of myelin-associated growth-inhibitory proteins contributes to the loss of regeneration as the mammalian central nervous system matures. The definition of a critical period for regeneration, coupled with the ability to apply trophic as well as inhibitory molecules to the culture, can permit quantitative assessment of molecular interactions that promote spinal cord regeneration.
Resumo:
Opossum kidney OKP cells express an apical membrane Na+/H+ antiporter that is encoded by NHE-3 (for Na+/H+ exchanger 3) and is similar in many respects to the renal proximal tubule apical membrane Na+/H+ antiporter. Chronic incubation of OKP cells in acid medium for 24 hr increases Na+/H(+)-antiporter activity and NHE-3 mRNA abundance. The increase in Na+/H(+)-antiporter activity was not prevented by H7, a protein kinase C/protein kinase A inhibitor, but was prevented by herbimycin A, a tyrosine kinase inhibitor. Incubation of cells in acid medium increased c-src activity, and this was inhibited by herbimycin A. To determine the role of the src family of nonreceptor protein-tyrosine kinases, Csk (for carboxyl-terminal src kinase), a physiologic inhibitor of these kinases, was overexpressed in OKP cells. In three clones overexpressing csk, acid-induced increases in Na+/H(+)-antiporter activity and NHE-3 mRNA abundance were inhibited. In these clones, inhibition of acid activation of Na+/H(+)-antiporter activity paralleled inhibition of acid activation of c-src. Neither herbimycin A nor overexpression of csk inhibited dexamethasone-induced increases in Na+/H(+)-antiporter activity. These studies show that decreases in pH activate c-src and that the src family nonreceptor protein-tyrosine kinases play a key role in acid activation of NHE-3.