14 resultados para Phase shift. Coral reefs. Alternative Stable States. Competition
em National Center for Biotechnology Information - NCBI
Resumo:
Coral reefs, with their millions of species, have changed profoundly because of the effects of people, and will continue to do so for the foreseeable future. Reefs are subject to many of the same processes that affect other human-dominated ecosystems, but some special features merit emphasis: (i) Many dominant reef builders spawn eggs and sperm into the water column, where fertilization occurs. They are thus particularly vulnerable to Allee effects, including potential extinction associated with chronic reproductive failure. (ii) The corals likely to be most resistant to the effects of habitat degradation are small, short-lived “weedy” corals that have limited dispersal capabilities at the larval stage. Habitat degradation, together with habitat fragmentation, will therefore lead to the establishment of genetically isolated clusters of inbreeding corals. (iii) Increases in average sea temperatures by as little as 1°C, a likely result of global climate change, can cause coral “bleaching” (the breakdown of coral–algal symbiosis), changes in symbiont communities, and coral death. (iv) The activities of people near reefs increase both fishing pressure and nutrient inputs. In general, these processes favor more rapidly growing competitors, often fleshy seaweeds, and may also result in explosions of predator populations. (v) Combinations of stress appear to be associated with threshold responses and ecological surprises, including devastating pathogen outbreaks. (vi) The fossil record suggests that corals as a group are more likely to suffer extinctions than some of the groups that associate with them, whose habitat requirements may be less stringent.
Resumo:
The transition of many Caribbean reefs from coral to macroalgal dominance has been a prominent issue in coral reef ecology for more than 20 years. Alternative stable state theory predicts that these changes are reversible but, to date, there is little indication of this having occurred. Here we present evidence of the initiation of such a reversal in Jamaica, where shallow reefs at five sites along 8 km of coastline now are characterized by a sea urchin-grazed zone with a mean width of 60 m. In comparison to the seaward algal zone, macroalgae are rare in the urchin zone, where the density of Diadema antillarum is 10 times higher and the density of juvenile corals is up to 11 times higher. These densities are close to those recorded in the late 1970s and early 1980s and are in striking contrast to the decade-long recruitment failure for both Diadema and scleractinians. If these trends continue and expand spatially, reefs throughout the Caribbean may again become dominated by corals and algal turf.
Self-organized phase transitions in neural networks as a neural mechanism of information processing.
Resumo:
Transitions between dynamically stable activity patterns imposed on an associative neural network are shown to be induced by self-organized infinitesimal changes in synaptic connection strength and to be a kind of phase transition. A key event for the neural process of information processing in a population coding scheme is transition between the activity patterns encoding usual entities. We propose that the infinitesimal and short-term synaptic changes based on the Hebbian learning rule are the driving force for the transition. The phase transition between the following two dynamical stable states is studied in detail, the state where the firing pattern is changed temporally so as to itinerate among several patterns and the state where the firing pattern is fixed to one of several patterns. The phase transition from the pattern itinerant state to a pattern fixed state may be induced by the Hebbian learning process under a weak input relevant to the fixed pattern. The reverse transition may be induced by the Hebbian unlearning process without input. The former transition is considered as recognition of the input stimulus, while the latter is considered as clearing of the used input data to get ready for new input. To ensure that information processing based on the phase transition can be made by the infinitesimal and short-term synaptic changes, it is absolutely necessary that the network always stays near the critical state corresponding to the phase transition point.
Resumo:
Two methods are commonly used to measure the community metabolism (primary production, respiration, and calcification) of shallow-water marine communities and infer air–sea CO2 fluxes: the pH-total alkalinity and pH-O2 techniques. The underlying assumptions of each technique are examined to assess the recent claim that the most widely used technique in coral reefs (pH-total alkalinity), may have provided spurious results in the past because of high rates of nitrification and release of phosphoric acid in the water column [Chisholm, J. R. M. & Barnes, D. J. (1998) Proc. Natl. Acad. Sci. USA 95, 6566–6569]. At least three lines of evidence suggest that this claim is not founded. First, the rate of nitrification required to explain the discrepancy between the two methods recently reported is not realistic as it is much higher than the rates measured in another reef system and greater than the highest rate measured in a marine environment. Second, fluxes of ammonium, nitrate, and phosphorus are not consistent with high rates of nitrification and release of phosphoric acid. Third, the consistency of the metabolic parameters obtained by using the two techniques is in good agreement in two sites recently investigated. The pH-total alkalinity technique therefore appears to be applicable in most coral reef systems. Consequently, the conclusion that most coral reef flats are sources of CO2 to the atmosphere does not need revision. Furthermore, we provide geochemical evidence that calcification in coral reefs, as well as in other calcifying ecosystems, is a long-term source of CO2 for the atmosphere.
Resumo:
It is not certain whether coral reefs are sources of or sinks for atmospheric CO2. Air–sea exchange of CO2 over reefs has been measured directly and inferred from changes in the seawater carbonate equilibrium. Such measurements have provided conflicting results. We provide community metabolic data that indicate that large changes in CO2 concentration can occur in coral reef waters via biogeochemical processes not directly associated with photosynthesis, respiration, calcification, and CaCO3 dissolution. These processes can significantly distort estimates of reef calcification and net productivity and obscure the contribution of coral reefs to global air–sea exchange of CO2. They may, nonetheless, explain apparent anomalies in the metabolic performance of reefs close to land and reconcile the differing experimental findings that have given rise to the CO2 debate.
Resumo:
The transcription factor E2F plays a major role in cell cycle control in mammalian cells. E2F binding sites, which are present in the promoters of a variety of genes required for S phase, shift from a negative to a positive role in transcription at the commitment point, a crucial point in G1 that precedes the G1/S transition. Before the commitment point, E2F activity is repressed by members of the pocket proteins family. This repression is believed to be crucial for the proper control of cell growth. We have previously shown that Rb, the founding member of the pocket proteins family, represses E2F1 activity by recruiting the histone deacetylase HDAC1. Here, we show that the two other members of the pocket proteins family, p107 and p130, also are able to interact physically with HDAC1 in live cells. HDAC1 interacts with p107 and Rb through an “LXCXE”-like motif, similar to that used by viral transforming proteins to bind and inactivate pocket proteins. Indeed, we find that the viral transforming protein E1A competes with HDAC1 for p107 interaction. We also demonstrate that p107 is able to interact simultaneously with HDAC1 and E2F4, suggesting a model in which p107 recruits HDAC1 to repress E2F sites. Indeed, we demonstrate that histone deacetylase activity is involved in the p107- or p130-induced repression of E2F4. Taken together, our data suggest that all members of the E2F family are regulated in early G1 by similar complexes, containing a pocket protein and the histone deacetylase HDAC1.
Resumo:
Localization of the central rhythm generator (CRG) of spontaneous consummatory licking was studied in freely moving rats by microinjection of tetrodotoxin (TTX) into the pontine reticular formation. Maximum suppression of spontaneous water consumption was elicited by TTX (1 ng) blockade of the oral part of the nucleus reticularis gigantocellularis (NRG), whereas TTX injections into more caudal or rostral locations caused significantly weaker disruption of drinking. To verify the assumption that TTX blocked the proper CRG of licking rather than some relay in its output, spontaneously drinking thirsty rats were intracranially stimulated via electrodes chronically implanted into the oral part of the NRG. Lick-synchronized stimulation (a 100-ms train of 0.1-ms-wide rectangular pulses at 100 Hz and 25-150 microA) applied during continuous licking (after eight regular consecutive licks) caused a phase shift of licks emitted after stimulus delivery. The results suggest that the stimulation has reset the CRG of licking without changing its frequency. The reset-inducing threshold current was lowest during the tongue retraction and highest during the tongue protrusion period of the lick cycle. It is concluded that the CRG of licking is located in the oral part of NRG.
Resumo:
The infected cell protein no. 0 (ICP0), the product of the alpha 0 gene, and an important herpes simplex virus 1 regulatory protein is encoded by three exons. We report that intron 1 forms a family of four stable nonpolyadenylylated cytoplasmic RNAs sharing a common 5' end but differing in 3' ends. The 5' and 3' ends correspond to the accepted splice donor and four splice acceptor sites within the mapped intron domain. The most distant splice acceptor site yields the mRNA encoding the 775-aa protein known as ICP0. The mRNAs resulting from the use of alternative splice acceptor sites were also present in the cytoplasm of infected cells and would be predicted to encode proteins of 152 (ICP0-B), 87 (ICP0-C), and 90 (ICP0-D) amino acids, respectively. Both the stability of the alpha 0 mRNA and the utilization of at least one splice acceptor site was regulated by ICP22 and or US1.5 protein inasmuch as cells infected with a mutant from which these genes had been deleted accumulated smaller amounts of alpha 0 mRNA than would be predicted from the amounts of accumulated intron RNAs. In addition, one splice acceptor site was at best underutilized. These results indicate that both the splicing pattern and longevity of alpha 0 mRNA are regulated. These and other recent examples indicate that herpes simplex virus 1 regulates its own gene expression and that of the infected cells through control of mRNA splicing and longevity.
Resumo:
Coral reef communities are in a state of change throughout their geographical range. Factors contributing to this change include bleaching (the loss of algal symbionts), storm damage, disease, and increasing abundance of macroalgae. An additional factor for Caribbean reefs is the aftereffects of the epizootic that reduced the abundance of the herbivorous sea urchin, Diadema antillarum. Although coral reef communities have undergone phase shifts, there are few studies that document the details of such transitions. We report the results of a 40-month study that documents changes in a Caribbean reef community affected by bleaching, hurricane damage, and an increasing abundance of macroalgae. The study site was in a relatively pristine area of the reef surrounding the island of San Salvador in the Bahamas. Ten transects were sampled every 3–9 months from November 1994 to February 1998. During this period, the corals experienced a massive bleaching event resulting in a significant decline in coral abundance. Algae, especially macroalgae, increased in abundance until they effectively dominated the substrate. The direct impact of Hurricane Lili in October 1996 did not alter the developing community structure and may have facilitated increasing algal abundance. The results of this study document the rapid transition of this reef community from one in which corals and algae were codominant to a community dominated by macroalgae. The relatively brief time period required for this transition illustrates the dynamic nature of reef communities.
Resumo:
In many species, young solicit food from their parents, which respond by feeding them. Because of the difference in genetic make-up between parents and their offspring and the consequent conflict, this interaction is often studied as a paradigm for the evolution of communication. Existent theoretical models demonstrate that chick signaling and parent responding can be stable if solicitation is a costly signal. The marginal cost of producing stronger signals allows the system to converge to an equilibrium: young beg with intensity that reflects their need, and parents use this information to maximize their own inclusive fitness. However, we show that there is another equilibrium where chicks do not beg and parents’ provisioning effort is optimal with respect to the statistically probable distribution of chicks’ states. Expected fitness for parents and offspring at the nonsignaling equilibrium is higher than at the signaling equilibrium. Because nonsignaling is stable and it is likely to be the ancestral condition, we would like to know how natural systems evolved from nonsignaling to signaling. We suggest that begging may have evolved through direct sibling fighting before the establishment of a parental response, that is, that nonsignaling squabbling leads to signaling. In multiple-offspring broods, young following a condition-dependent strategy in the contest for resources provide information about their condition. Parents can use this information even though it is not an adaptation for communication, and evolution will lead the system to the signaling equilibrium. This interpretation implies that signaling evolved in multiple-offspring broods, but given that signaling is evolutionarily stable, it would also be favored in species which secondarily evolved single-chick broods.
Resumo:
Ion-pair reversed-phase high performance liquid chromatography (IP RP HPLC) is presented as a new, superior method for the analysis of RNA. IP RP HPLC provides a fast and reliable alternative to classical methods of RNA analysis, including separation of different RNA species, quantification and purification. RNA is stable under the analysis conditions used; degradation of RNA during the analyses was not observed. The versatility of IP RP HPLC for RNA analysis is demonstrated. Components of an RNA ladder, ranging in size from 155 to 1770 nt, were resolved. RNA transcripts of up to 5219 nt were analyzed, their integrity determined and they were quantified and purified. Purification of mRNA from total RNA is described, separating mouse rRNA from poly(A)+ mRNA. IP RP HPLC is also suitable for the separation and purification of DIG-labeled from unlabeled RNA. RNA purified by IP RP HPLC exhibits improved stability.
Resumo:
How a reacting system climbs through a transition state during the course of a reaction has been an intriguing subject for decades. Here we present and quantify a technique to identify and characterize local invariances about the transition state of an N-particle Hamiltonian system, using Lie canonical perturbation theory combined with microcanonical molecular dynamics simulation. We show that at least three distinct energy regimes of dynamical behavior occur in the region of the transition state, distinguished by the extent of their local dynamical invariance and regularity. Isomerization of a six-atom Lennard–Jones cluster illustrates this: up to energies high enough to make the system manifestly chaotic, approximate invariants of motion associated with a reaction coordinate in phase space imply a many-body dividing hypersurface in phase space that is free of recrossings even in a sea of chaos. The method makes it possible to visualize the stable and unstable invariant manifolds leading to and from the transition state, i.e., the reaction path in phase space, and how this regularity turns to chaos with increasing total energy of the system. This, in turn, illuminates a new type of phase space bottleneck in the region of a transition state that emerges as the total energy and mode coupling increase, which keeps a reacting system increasingly trapped in that region.
Resumo:
Transcription of the genes for the human histone proteins H4, H3, H2A, H2B, and H1 is activated at the G1/S phase transition of the cell cycle. We have previously shown that the promoter complex HiNF-D, which interacts with cell cycle control elements in multiple histone genes, contains the key cell cycle factors cyclin A, CDC2, and a retinoblastoma (pRB) protein-related protein. However, an intrinsic DNA-binding subunit for HiNF-D was not identified. Many genes that are up-regulated at the G1/S phase boundary are controlled by E2F, a transcription factor that associates with cyclin-, cyclin-dependent kinase-, and pRB-related proteins. Using gel-shift immunoassays, DNase I protection, and oligonucleotide competition analyses, we show that the homeodomain protein CDP/cut, not E2F, is the DNA-binding subunit of the HiNF-D complex. The HiNF-D (CDP/cut) complex with the H4 promoter is immunoreactive with antibodies against CDP/cut and pRB but not p107, whereas the CDP/cut complex with a nonhistone promoter (gp91-phox) reacts only with CDP and p107 antibodies. Thus, CDP/cut complexes at different gene promoters can associate with distinct pRB-related proteins. Transient coexpression assays show that CDP/cut modulates H4 promoter activity via the HiNF-D-binding site. Hence, DNA replication-dependent histone H4 genes are regulated by an E2F-independent mechanism involving a complex of CDP/cut with cyclin A/CDC2/ RB-related proteins.