2 resultados para Pharynx

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low caloric intake (caloric restriction) can lengthen the life span of a wide range of animals and possibly even of humans. To understand better how caloric restriction lengthens life span, we used genetic methods and criteria to investigate its mechanism of action in the nematode Caenorhabditis elegans. Mutations in many genes (eat genes) result in partial starvation of the worm by disrupting the function of the pharynx, the feeding organ. We found that most eat mutations significantly lengthen life span (by up to 50%). In C. elegans, mutations in a number of other genes that can extend life span have been found. Two genetically distinct mechanisms of life span extension are known: a mechanism involving genes that regulate dauer formation (age-1, daf-2, daf-16, and daf-28) and a mechanism involving genes that affect the rate of development and behavior (clk-1, clk-2, clk-3, and gro-1). We find that the long life of eat-2 mutants does not require the activity of DAF-16 and that eat-2; daf-2 double mutants live even longer than extremely long-lived daf-2 mutants. These findings demonstrate that food restriction lengthens life span by a mechanism distinct from that of dauer-formation mutants. In contrast, we find that food restriction does not further increase the life span of long-lived clk-1 mutants, suggesting that clk-1 and caloric restriction affect similar processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cholesterol transport is an essential process in all multicellular organisms. In this study we applied two recently developed approaches to investigate the distribution and molecular mechanisms of cholesterol transport in Caenorhabditis elegans. The distribution of cholesterol in living worms was studied by imaging its fluorescent analog, dehydroergosterol, which we applied to the animals by feeding. Dehydroergosterol accumulates primarily in the pharynx, nerve ring, excretory gland cell, and gut of L1–L3 larvae. Later, the bulk of dehydroergosterol accumulates in oocytes and spermatozoa. Males display exceptionally strong labeling of spermatids, which suggests a possible role for cholesterol in sperm development. In a complementary approach, we used a photoactivatable cholesterol analog to identify cholesterol-binding proteins in C. elegans. Three major and several minor proteins were found specifically cross-linked to photocholesterol after UV irradiation. The major proteins were identified as vitellogenins. rme-2 mutants, which lack the vitellogenin receptor, fail to accumulate dehydroergosterol in oocytes and embryos and instead accumulate dehydroergosterol in the body cavity along with vitellogenin. Thus, uptake of cholesterol by C. elegans oocytes occurs via an endocytotic pathway involving yolk proteins. The pathway is a likely evolutionary ancestor of mammalian cholesterol transport.