2 resultados para Perylencarbonsäureimide, molekularer Rotor, Einzelmolekülspektroskopie, optoelektronische Bauteile

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacterial flagellar motors rotate, obtaining power from the membrane gradient of protons or, in some species, sodium ions. Torque generation in the flagellar motor must involve interactions between components of the rotor and components of the stator. Sites of interaction between the rotor and stator have not been identified. Mutational studies of the rotor protein FliG and the stator protein MotA showed that both proteins contain charged residues essential for motor rotation. This suggests that functionally important electrostatic interactions might occur between the rotor and stator. To test this proposal, we examined double mutants with charged-residue substitutions in both the rotor protein FliG and the stator protein MotA. Several combinations of FliG mutations with MotA mutations exhibited strong synergism, whereas others showed strong suppression, in a pattern that indicates that the functionally important charged residues of FliG interact with those of MotA. These results identify a functionally important site of interaction between the rotor and stator and suggest a hypothesis for electrostatic interactions at the rotor–stator interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classical molecular dynamics is applied to the rotation of a dipolar molecular rotor mounted on a square grid and driven by rotating electric field E(ν) at T ≃ 150 K. The rotor is a complex of Re with two substituted o-phenanthrolines, one positively and one negatively charged, attached to an axial position of Rh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{4+}}}\end{equation*}\end{document} in a [2]staffanedicarboxylate grid through 2-(3-cyanobicyclo[1.1.1]pent-1-yl)malonic dialdehyde. Four regimes are characterized by a, the average lag per turn: (i) synchronous (a < 1/e) at E(ν) = |E(ν)| > Ec(ν) [Ec(ν) is the critical field strength], (ii) asynchronous (1/e < a < 1) at Ec(ν) > E(ν) > Ebo(ν) > kT/μ, [Ebo(ν) is the break-off field strength], (iii) random driven (a ≃ 1) at Ebo(ν) > E(ν) > kT/μ, and (iv) random thermal (a ≃ 1) at kT/μ > E(ν). A fifth regime, (v) strongly hindered, W > kT, Eμ, (W is the rotational barrier), has not been examined. We find Ebo(ν)/kVcm−1 ≃ (kT/μ)/kVcm−1 + 0.13(ν/GHz)1.9 and Ec(ν)/kVcm−1 ≃ (2.3kT/μ)/kVcm−1 + 0.87(ν/GHz)1.6. For ν > 40 GHz, the rotor behaves as a macroscopic body with a friction constant proportional to frequency, η/eVps ≃ 1.14 ν/THz, and for ν < 20 GHz, it exhibits a uniquely molecular behavior.