2 resultados para Personality of Laws

em National Center for Biotechnology Information - NCBI


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Association between Y chromosome haplotype variation and alcohol dependence and related personality traits was investigated in a large sample of psychiatrically diagnosed Finnish males. Haplotypes were constructed for 359 individuals using alleles at eight loci (seven microsatellite loci and a nucleotide substitution in the DYZ3 alphoid satellite locus). A cladogram linking the 102 observed haplotype configurations was constructed by using parsimony with a single-step mutation model. Then, a series of contingency tables nested according to the cladogram hierarchy were used to test for association between Y haplotype and alcohol dependence. Finally, using only alcohol-dependent subjects, we tested for association between Y haplotype and personality variables postulated to define subtypes of alcoholism—antisocial personality disorder, novelty seeking, harm avoidance, and reward dependence. Significant association with alcohol dependence was observed at three Y haplotype clades, with significance levels of P = 0.002, P = 0.020, and P = 0.010. Within alcohol-dependent subjects, no relationship was revealed between Y haplotype and antisocial personality disorder, novelty seeking, harm avoidance, or reward dependence. These results demonstrate, by using a fully objective association design, that differences among Y chromosomes contribute to variation in vulnerability to alcohol dependence. However, they do not demonstrate an association between Y haplotype and the personality variables thought to underlie the subtypes of alcoholism.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Presented analysis of human and fly life tables proves that with the specified accuracy their entire survival and mortality curves are uniquely determined by a single point (e.g., by the birth mortality q0), according to the law, which is universal for species as remote as humans and flies. Mortality at any age decreases with the birth mortality q0. According to life tables, in the narrow vicinity of a certain q0 value (which is the same for all animals of a given species, independent of their living conditions), the curves change very rapidly and nearly simultaneously for an entire population of different ages. The change is the largest in old age. Because probability to survive to the mean reproductive age quantifies biological fitness and evolution, its universal rapid change with q0 (which changes with living conditions) manifests a new kind of an evolutionary spurt of an entire population. Agreement between theoretical and life table data is explicitly seen in the figures. Analysis of the data on basic metabolism reduces it to the maximal mean lifespan (for animals from invertebrates to mammals), or to the maximal mean fission time (for bacteria), and universally scales them with the total number of body atoms only. Phenomenological origin of this unification and universality of metabolism, survival, and evolution is suggested. Their implications and challenges are discussed.