17 resultados para Permeation

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasmodium falciparum requires glucose as its energy source to multiply within erythrocytes but is separated from plasma by multiple membrane systems. The mechanism of delivery of substrates such as glucose to intraerythrocytic parasites is unclear. We have developed a system for robust functional expression in Xenopus oocytes of the P. falciparum asexual stage hexose permease, PfHT1, and have analyzed substrate specificities of PfHT1. We show that PfHT1 (a high-affinity glucose transporter, Km ≈ 1.0 mM) also transports fructose (Km ≈ 11.5 mM). Fructose can replace glucose as an energy source for intraerythrocytic parasites. PfHT1 binds fructose in a furanose conformation and glucose in a pyranose form. Fructose transport by PfHT1 is ablated by mutation of a single glutamine residue, Q169, which is predicted to lie within helix 5 of the hexose permeation pathway. Glucose transport in the Q169N mutant is preserved. Comparison in oocytes of transport properties of PfHT1 and human facilitative glucose transporter (GLUT)1, an archetypal mammalian hexose transporter, combined with studies on cultured P. falciparum, has clarified hexose permeation pathways in infected erythrocytes. Glucose and fructose enter erythrocytes through separate permeation pathways. Our studies suggest that both substrates enter parasites via PfHT1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The isotropic 14N-hyperfine coupling constant, a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{o}^{N}}}\end{equation*}\end{document}, of nitroxide spin labels is dependent on the local environmental polarity. The dependence of a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{o}^{N}}}\end{equation*}\end{document} in fluid phospholipid bilayer membranes on the C-atom position, n, of the nitroxide in the sn-2 chain of a spin-labeled diacyl glycerophospholipid therefore determines the transmembrane polarity profile. The polarity variation in phospholipid membranes, with and without equimolar cholesterol, is characterized by a sigmoidal, trough-like profile of the form {1 + exp [(n − no)/λ]}−1, where n = no is the point of maximum gradient, or polarity midpoint, beyond which the free energy of permeation decreases linearly with n, on a characteristic length-scale, λ. Integration over this profile yields a corresponding expression for the permeability barrier to polar solutes. For fluid membranes without cholesterol, no ≈ 8 and λ ≈ 0.5–1 CH2 units, and the permeability barrier introduces an additional diffusive resistance that is equivalent to increasing the effective membrane thickness by 35–80%, depending on the lipid. For membranes containing equimolar cholesterol, no ≈ 9–10, and the total change in polarity is greater than for membranes without cholesterol, increasing the permeability barrier by a factor of 2, whereas the decay length remains similar. The permeation of oxygen into fluid lipid membranes (determined by spin-label relaxation enhancements) displays a profile similar to that of the transmembrane polarity but of opposite sense. For fluid membranes without cholesterol no ≈ 8 and λ ≈ 1 CH2 units, also for oxygen. The permeation profile for polar paramagnetic ion complexes is closer to a single exponential decay, i.e., no lies outside the acyl-chain region of the membrane. These results are relevant not only to the permeation of water and polar solutes into membranes and their permeabilities, but also to depth determinations of site-specifically spin-labeled protein residues by using paramagnetic relaxation agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Successful cryopreservation of most multicompartmental biological systems has not been achieved. One prerequisite for success is quantitative information on cryoprotectant permeation into and amongst the compartments. This report describes direct measurements of cryoprotectant permeation into a multicompartmental system using chemical shift selective magnetic resonance (MR) microscopy and MR spectroscopy. We used the developing zebrafish embryo as a model for studying these complex systems because these embryos are composed of two membrane-limited compartments: (i) a large yolk (surrounded by the yolk syncytial layer) and (ii) differentiating blastoderm cells (each surrounded by a plasma membrane). MR images of the spatial distribution of three cryoprotectants (dimethyl sulfoxide, propylene glycol, and methanol) demonstrated that methanol permeated the entire embryo within 15 min. In contrast, the other cryoprotectants exhibited little or no permeation over 2.5 h. MR spectroscopy and microinjections of cryoprotectants into the yolk inferred that the yolk syncytial layer plays a critical role in limiting the permeation of some cryoprotectants throughout the embryo. This study demonstrates the power of MR technology combined with micromanipulation for elucidating key physiological factors in cryobiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gap junction channels are formed by members of the connexin gene family and mediate direct intercellular communication through linked hemichannels (connexons) from each of two adjacent cells. While for most connexins, the hemichannels appear to require an apposing hemichannel to open, macroscopic currents obtained from Xenopus oocytes expressing rat Cx46 suggested that some hemichannels can be readily opened by membrane depolarization [Paul, D. L., Ebihara, L., Takemoto, L. J., Swenson, K. I. & Goodenough, D. A. (1991), J. Cell Biol. 115, 1077-1089]. Here we demonstrate by single channel recording that hemichannels comprised of rat Cx46 exhibit complex voltage gating consistent with there being two distinct gating mechanisms. One mechanism partially closes Cx46 hemichannels from a fully open state, gammaopen, to a substate, gammasub, about one-third of the conductance of gammaopen; these transitions occur when the cell is depolarized to inside positive voltages, consistent with gating by transjunctional voltage in Cx46 gap junctions. The other gating mechanism closes Cx46 hemichannels to a fully closed state, gammaclosed, on hyperpolarization to inside negative voltages and has unusual characteristics; transitions between gammaclosed and gammaopen appear slow (10-20 ms), often involving several transient substates distinct from gammasub. The polarity of activation and kinetics of this latter form of gating indicate that it is the mechanism by which these hemichannels open in the cell surface membrane when unapposed by another hemichannel. Cx46 hemichannels display a substantial preference for cations over anions, yet have a large unitary conductance (approximately 300 pS) and a relatively large pore as inferred from permeability to tetraethylammonium (approximately 8.5 angstroms diameter). These hemichannels open at physiological voltages and could induce substantial cation fluxes in cells expressing Cx46.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The blood–brain barrier and a blood–cerebrospinal-fluid (CSF) barrier function together to isolate the brain from circulating drugs, toxins, and xenobiotics. The blood–CSF drug-permeability barrier is localized to the epithelium of the choroid plexus (CP). However, the molecular mechanisms regulating drug permeability across the CP epithelium are defined poorly. Herein, we describe a drug-permeability barrier in human and rodent CP mediated by epithelial-specific expression of the MDR1 (multidrug resistance) P glycoprotein (Pgp) and the multidrug resistance-associated protein (MRP). Noninvasive single-photon-emission computed tomography with 99mTc-sestamibi, a membrane-permeant radiopharmaceutical whose transport is mediated by both Pgp and MRP, shows a large blood-to-CSF concentration gradient across intact CP epithelium in humans in vivo. In rats, pharmacokinetic analysis with 99mTc-sestamibi determined the concentration gradient to be greater than 100-fold. In membrane fractions of isolated native CP from rat, mouse, and human, the 170-kDa Pgp and 190-kDa MRP are identified readily. Furthermore, the murine proteins are absent in CP isolated from their respective mdr1a/1b(−/−) and mrp(−/−) gene knockout littermates. As determined by immunohistochemical and drug-transport analysis of native CP and polarized epithelial cell cultures derived from neonatal rat CP, Pgp localizes subapically, conferring an apical-to-basal transepithelial permeation barrier to radiolabeled drugs. Conversely, MRP localizes basolaterally, conferring an opposing basal-to-apical drug-permeation barrier. Together, these transporters may coordinate secretion and reabsorption of natural product substrates and therapeutic drugs, including chemotherapeutic agents, antipsychotics, and HIV protease inhibitors, into and out of the central nervous system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In vivo antinociception studies demonstrate that deltorphins are opioid peptides with an unusually high blood–brain barrier penetration rate. In vitro, isolated bovine brain microvessels can take up deltorphins through a saturable nonconcentrative permeation system, which is apparently distinct from previously described systems involved in the transport of neutral amino acids or of enkephalins. Removing Na+ ions from the incubation medium decreases the carrier affinity for deltorphins (−25%), but does not affect the Vmax value of the transport. The nonselective opiate antagonist naloxone inhibits deltorphin uptake by brain microvessels, but neither the selective δ-opioid antagonist naltrindole nor a number of opioid peptides with different affinities for δ- or μ-opioid receptors compete with deltorphins for the transport. Binding studies demonstrate that μ-, δ-, and κ-opioid receptors are undetectable in the microvessel preparation. Preloading of the microvessels with l-glutamine results in a transient stimulation of deltorphin uptake. Glutamine-accelerated deltorphin uptake correlates to the rate of glutamine efflux from the microvessels and is abolished by naloxone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transporters for the biogenic amines dopamine, norepinephrine, epinephrine and serotonin are largely responsible for transmitter inactivation after release. They also serve as high-affinity targets for a number of clinically relevant psychoactive agents, including antidepressants, cocaine, and amphetamines. Despite their prominent role in neurotransmitter inactivation and drug responses, we lack a clear understanding of the permeation pathway or regulation mechanisms at the single transporter level. The resolution of radiotracer-based flux techniques limits the opportunities to dissect these problems. Here we combine patch-clamp recording techniques with microamperometry to record the transporter-mediated flux of norepinephrine across isolated membrane patches. These data reveal voltage-dependent norepinephrine flux that correlates temporally with antidepressant-sensitive transporter currents in the same patch. Furthermore, we resolve unitary flux events linked with bursts of transporter channel openings. These findings indicate that norepinephrine transporters are capable of transporting neurotransmitter across the membrane in discrete shots containing hundreds of molecules. Amperometry is used widely to study neurotransmitter distribution and kinetics in the nervous system and to detect transmitter release during vesicular exocytosis. Of interest regarding the present application is the use of amperometry on inside-out patches with synchronous recording of flux and current. Thus, our results further demonstrate a powerful method to assess transporter function and regulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CLC chloride channels form a large and conserved gene family unrelated to other channel proteins. Knowledge of the transmembrane topology of these channels is important for understanding the effects of mutations found in human myotonia and inherited hypercalciuric kidney stone diseases and for the interpretation of structure–function studies. We now systematically study the topology of human ClC-1, a prototype CLC channel that is defective in human myotonia. Using a combination of in vitro glycosylation scanning and protease protection assays, we show that both N and C termini face the cytoplasm and demonstrate the presence of 10 (or less likely 12) transmembrane spans. Difficult regions were additionally tested by inserting cysteines and probing the effect of cysteine-modifying reagents on ClC-1 currents. The results show that D3 crosses the membrane and D4 does not, and that L549 between D11 and D12 is accessible from the outside. Further, since the modification of cysteines introduced between D11 and D12 and at the extracellular end of D3 strongly affect ClC-1 currents, these regions are suggested to be important for ion permeation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Block of the channel of N-methyl-d-aspartate (NMDA) receptors by external Mg2+ (Mgo2+) has broad implications for the many physiological and pathological processes that depend on NMDA receptor activation. An essential property of channel block by Mgo2+ is its powerful voltage dependence. A widely cited explanation for the strength of the voltage dependence of block is that the Mgo2+-binding site is located deep in the channel of NMDA receptors; Mgo2+ then would sense most of the membrane potential field during block. However, recent electrophysiological and mutagenesis studies suggest that the blocking site cannot be deep enough to account for the voltage dependence of Mgo2+ block. Here we describe the basis for this discrepancy: the magnitude and voltage dependence of channel block by Mgo2+ are strongly regulated by external and internal permeant monovalent cations. Our data support a model in which access to the channel by Mgo2+ is prevented when permeant ion-binding sites at the external entrance to the channel are occupied. Mgo2+ can block the channel only when the permeant ion-binding sites are unoccupied and then can either unblock back to the external solution or permeate the channel. Unblock to the external solution is prevented if external permeant ions bind while Mg2+ blocks the channel, although permeation is still permitted. The model provides an explanation for the strength of the voltage dependence of Mgo2+ block and quantifies the interdependence of permanent and blocking ion binding to NMDA receptors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fungi that cause brown rot of wood are essential biomass recyclers and also the principal agents of decay in wooden structures, but the extracellular mechanisms by which they degrade lignocellulose remain unknown. To test the hypothesis that brown-rot fungi use extracellular free radical oxidants as biodegradative tools, Gloeophyllum trabeum was examined for its ability to depolymerize an environmentally recalcitrant polyether, poly(ethylene oxide) (PEO), that cannot penetrate cell membranes. Analyses of degraded PEOs by gel permeation chromatography showed that the fungus cleaved PEO rapidly by an endo route. 13C NMR analyses of unlabeled and perdeuterated PEOs recovered from G. trabeum cultures showed that a major route for depolymerization was oxidative C—C bond cleavage, a reaction diagnostic for hydrogen abstraction from a PEO methylene group by a radical oxidant. Fenton reagent (Fe(II)/H2O2) oxidized PEO by the same route in vitro and therefore might account for PEO biodegradation if it is produced by the fungus, but the data do not rule out involvement of less reactive radicals. The reactivity and extrahyphal location of this PEO-degrading system suggest that its natural function is to participate in the brown rot of wood and that it may enable brown-rot fungi to degrade recalcitrant organopollutants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A finely tuned Ca2+ signaling system is essential for cells to transduce extracellular stimuli, to regulate growth, and to differentiate. We have recently cloned CaT-like (CaT-L), a highly selective Ca2+ channel closely related to the epithelial calcium channels (ECaC) and the calcium transport protein CaT1. CaT-L is expressed in selected exocrine tissues, and its expression also strikingly correlates with the malignancy of prostate cancer. The expression pattern and selective Ca2+ permeation properties suggest an important function in Ca2+ uptake and a role in tumor progression, but not much is known about the regulation of this subfamily of ion channels. We now demonstrate a biochemical and functional mechanism by which cells can control CaT-L activity. CaT-L is regulated by means of a unique calmodulin binding site, which, at the same time, is a target for protein kinase C-dependent phosphorylation. We show that Ca2+-dependent calmodulin binding to CaT-L, which facilitates channel inactivation, can be counteracted by protein kinase C-mediated phosphorylation of the calmodulin binding site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

KAT1 is a voltage-dependent inward rectifying K+ channel cloned from the higher plant Arabidopsis thaliana [Anderson, J. A., Huprikar, S. S., Kochian, L. V., Lucas, W. J. & Gaber, R. F. (1992) Proc. Natl. Acad. Sci. USA 89, 3736-3740]. It is related to the Shaker superfamily of K+ channels characterized by six transmembrane spanning domains (S1-S6) and a putative pore-forming region between S5 and S6 (H5). The 115 region between Pro-247 and Pro-271 in KAT1 contains 14 additional amino acids when compared with Shaker [Aldrich, R. W. (1993) Nature (London) 362, 107-108]. We studied various point mutations introduced into H5 to determine whether voltage-dependent plant and animal K+ channels share similar pore structures. Through heterologous expression in Xenopus oocytes and voltage-clamp analysis combined with phenotypic analysis involving a potassium transport-defective Saccharomyces cerevisiae strain, we investigated the selectivity filter of the mutants and their susceptibility toward inhibition by cesium and calcium ions. With respect to electrophysiological properties, KAT1 mutants segregated into three groups: (i) wild-type-like channels, (ii) channels modified in selectivity and Cs+ or Ca2+ sensitivity, and (iii) a group that was additionally affected in its voltage dependence. Despite the additional 14 amino acids in H5, this motif in KAT1 is also involved in the formation of the ion-conducting pore because amino acid substitutions at Leu-251, Thr-256, Thr-259, and Thr-260 resulted in functional channels with modified ionic selectivity and inhibition. Creation of Ca2+ sensitivity and an increased susceptibility to Cs+ block through mutations within the narrow pore might indicate that both blockers move deeply into the channel. Furthermore, mutations close to the rim of the pore affecting the half-activation potential (U1/2) indicate that amino acids within the pore either interact with the voltage sensor or ion permeation feeds back on gating.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the cortex fast excitatory synaptic currents onto excitatory pyramidal neurons and inhibitory nonpyramidal neurons are mediated by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors exhibiting cell-type-specific differences in their kinetic properties. AMPA receptors consist of four subunits (GluR1-4), each existing as two splice variants, flip and flop, which critically affect the desensitization properties of receptors expressed in heterologous systems. Using single cell reverse transcription PCR to analyze the mRNA of AMPA receptor subunits expressed in layers I-III neocortical neurons, we find that 90% of the GluR1-4 in nonpyramidal neurons are flop variants, whereas 92% of the GluR1-4 in pyramidal neurons are flip variants. We also find that nonpyramidal neurons predominantly express GluR1 mRNA (GluR1/GluR1-4 = 59%), whereas pyramidal neurons contain mainly GluR2 mRNA (GluR2/GluR1-4 = 59%). However, the neuron-type-specific splicing is exhibited by all four AMPA receptor subunits. We suggest that the predominance of the flop variants contributes to the faster and more extensive desensitization in nonpyramidal neurons, compared to pyramidal cells where flip variants are dominant. Alternative splicing of AMPA receptors may play an important role in regulating synaptic function in a cell-type-specific manner, without changing permeation properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A hair cell, the sensory receptor of the internal ear, transduces mechanical stimuli into electrical responses. Transduction results from displacement of the hair bundle, a cluster of rod-shaped stereocilia extending from the cell's apical surface. Biophysical experiments indicate that, by producing shear between abutting stereocilia, a bundle displacement directly opens cation-selective transduction channels. Specific models of gating depend on the location of these channels, which has been controversial: although some physiological and immunocytochemical experiments have situated the transduction channels at the hair bundle's top, monitoring of fluorescence signals from the Ca2+ indicator fura-2 has instead suggested that Ca2+ traverses channels at the bundle's base. To examine the site of Ca2+ entry through transduction channels, we used laser-scanning confocal microscopy, with a spatial resolution of < 1 micron and a temporal resolution of < 2 ms, to observe hair cells filled with the indicator fluo-3. An unstimulated hair cell showed a "tip blush" of enhanced fluorescence at the hair bundle's top, which we attribute to Ca2+ permeation through transduction channels open at rest. Upon mechanical stimulation, individual stereocilia displayed increased fluorescence that originated near their tips, then spread toward their bases. Our results confirm that mechanoelectrical transduction occurs near stereociliary tips.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mutation studies have identified a region of the S5-S6 loop of voltage-gated K+ channels (P region) responsible for teraethylammonium (TEA) block and permeation/selectivity properties. We previously modeled a similar region of the Na+ channel as four beta-hairpins with the C strands from each of the domains forming the external vestibule and with charged residues at the beta-turns forming the selectivity filter. However, the K+ channel P region amino acid composition is much more hydrophobic in this area. Here we propose a structural motif for the K+ channel pore based on the following postulates (Kv2.1 numbering). (i) The external TEA binding site is formed by four Tyr-380 residues; P loop residues participating in the internal TEA binding site are four Met-371 and Thr-372 residues. (ii) P regions form extended hairpins with beta-turns in sequence ITMT. (iii) only C ends of hairpins form the inner walls of the pore. (iv) They are extended nonregular strands with backbone carbonyl oxygens of segment VGYGD facing the pore with the conformation BRLRL. (v) Juxtaposition of P loops of the four subunits forms the pore. Fitting the external and internal TEA sites to TEA molecules predicts an hourglass-like pore with the narrowest point (GYG) as wide as 5.5 A, suggesting that selectivity may be achieved by interactions of carbonyls with partially hydrated K+. Other potential cation binding sites also exist in the pore.