3 resultados para Perinatal period

em National Center for Biotechnology Information - NCBI


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The transcription of genes encoding gluconeogenic enzymes is tightly regulated during the perinatal period. These genes are induced by glucagon (cAMP) and glucocorticoids and repressed by insulin. To address the role of cAMP and glucocorticoids in the physiological activation of genes encoding gluconeogenic enzymes in the perinatal period, transgenic mice have been generated with chimeric constructs containing the reporter gene lacZ under the control of hormone response elements. The activity of the transgene is restricted to the liver by the presence of the enhancers from the alpha-fetoprotein gene and its transcription is driven by a promoter that contains a TATA box linked to either cAMP response elements (CREs) or glucocorticoid response elements (GREs). We demonstrate cAMP and glucocorticoid regulation, liver-specific expression, and perinatal activation of the reporter gene. These data indicate that the CRE and GRE are, independently, necessary and sufficient to mediate perinatal gene activation. Perinatal activation was not impaired when a CRE reporter transgene was assayed in mice that contain a targeted mutation of the CRE-binding protein (CREB) gene, providing further evidence for functional redundancy among the members of the CREB/ATF gene family.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transgenic expression of the influenza virus hemagglutinin (HA) in the pancreatic islet β cells of InsHA mice leads to peripheral tolerance of HA-specific T cells. To examine the onset of tolerance, InsHA mice were immunized with influenza virus A/PR/8 at different ages, and the presence of nontolerant T cells was determined by the induction of autoimmune diabetes. The data revealed a neonatal period wherein T cells were not tolerant and influenza virus infection led to HA-specific β cell destruction and autoimmune diabetes. The ability to induce autoimmunity gradually waned, such that adult mice were profoundly tolerant to viral HA and were protected from diabetes. Because cross-presentation of islet antigens by professional antigen-presenting cells had been reported to induce peripheral tolerance, the temporal relationship between tolerance induction and activation of HA-specific T cells in the lymph nodes draining the pancreas was examined. In tolerant adult mice, but not in 1-week-old neonates, activation and proliferation of HA-specific CD8+ T cells occurred in the pancreatic lymph nodes. Thus, lack of tolerance in the perinatal period correlated with lack of activation of antigen-specific CD8+ T cells. This work provides evidence for the developmental regulation of peripheral tolerance induction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mutation in human ZIC2, a zinc finger protein homologous to Drosophila odd-paired, causes holoprosencephaly (HPE), which is a common, severe malformation of the brain in humans. However, the pathogenesis is largely unknown. Here we show that reduced expression (knockdown) of mouse Zic2 causes neurulation delay, resulting in HPE and spina bifida. Differentiation of the most dorsal neural plate, which gives rise to both roof plate and neural crest cells, also was delayed as indicated by the expression lag of a roof plate marker, Wnt3a. In addition the development of neural crest derivatives such as dorsal root ganglion was impaired. These results suggest that the Zic2 expression level is crucial for the timing of neurulation. Because the Zic2 knockdown mouse is the first mutant with HPE and spina bifida to survive to the perinatal period, the mouse will promote analyses of not only the neurulation but also the pathogenesis of human HPE.