9 resultados para Perfíl mole
em National Center for Biotechnology Information - NCBI
Resumo:
The subclass Theria of Mammalia includes marsupials (infraclass Metatheria) and placentals (infraclass Eutheria). Within each group, interordinal relationships remain unclear. One limitation of many studies is incomplete ordinal representation. Here, we analyze DNA sequences for part of exon 1 of the interphotoreceptor retinoid binding protein gene, including 10 that are newly reported, for representatives of all therian orders. Among placentals, the most robust clades are Cetartiodactyla, Paenungulata, and an expanded African clade that includes paenungulates, tubulidentates, and macroscelideans. Anagalida, Archonta, Altungulata, Hyracoidea + Perissodactyla, Ungulata, and the “flying primate” hypothesis are rejected by statistical tests. Among marsupials, the most robust clade includes all orders except Didelphimorphia. The phylogenetic placement of the monito del monte and the marsupial mole remains unclear. However, the marsupial mole sequence contains three frameshift indels and numerous stop codons in all three reading frames. Given that the interphotoreceptor retinoid binding protein gene is a single-copy gene that functions in the visual cycle and that the marsupial mole is blind with degenerate eyes, this finding suggests that phenotypic degeneration of the eyes is accompanied by parallel changes at the molecular level as a result of relaxed selective constraints.
Resumo:
Imaging of photochemical yield of photosystem II (PSII) computed from leaf chlorophyll fluorescence images and gas-exchange measurements were performed on Rosa rubiginosa leaflets during abscisic acid (ABA) addition. In air ABA induced a decrease of both the net CO2 assimilation (An) and the stomatal water vapor conductance (gs). After ABA treatment, imaging in transient nonphotorespiratory conditions (0.1% O2) revealed a heterogeneous decrease of PSII photochemical yield. This decline was fully reversed by a transient high CO2 concentration (7400 μmol mol−1) in the leaf atmosphere. It was concluded that ABA primarily affected An by decreasing the CO2 supply at ribulose-1,5-bisphosphate carboxylase/oxygenase. Therefore, the An versus intercellular mole fraction (Ci) relationship was assumed not to be affected by ABA, and images of Ci and gs were constructed from images of PSII photochemical yield under nonphotorespiratory conditions. The distribution of gs remained unimodal following ABA treatment. A comparison of calculations of Ci from images and gas exchange in ABA-treated leaves showed that the overestimation of Ci estimated from gas exchange was only partly due to heterogeneity. This overestimation was also attributed to the cuticular transpiration, which largely affects the calculation of the leaf conductance to CO2, when leaf conductance to water is low.
Resumo:
The mechanoelectrical-transduction channel of the hair cell is permeable to both monovalent and divalent cations. Because Ca2+ entering through the transduction channel serves as a feedback signal in the adaptation process that sets the channel’s open probability, an understanding of adaptation requires estimation of the magnitude of Ca2+ influx. To determine the Ca2+ current through the transduction channel, we measured extracellular receptor currents with transepithelial voltage-clamp recordings while the apical surface of a saccular macula was bathed with solutions containing various concentrations of K+, Na+, or Ca2+. For modest concentrations of a single permeant cation, Ca2+ carried much more receptor current than did either K+ or Na+. For higher cation concentrations, however, the flux of Na+ or K+ through the transduction channel exceeded that of Ca2+. For mixtures of Ca2+ and monovalent cations, the receptor current displayed an anomalous mole-fraction effect, which indicates that ions interact while traversing the channel’s pore. These results demonstrate not only that the hair cell’s transduction channel is selective for Ca2+ over monovalent cations but also that Ca2+ carries substantial current even at low Ca2+ concentrations. At physiological cation concentrations, Ca2+ flux through transduction channels can change the local Ca2+ concentration in stereocilia in a range relevant for the control of adaptation.
Resumo:
Studies on transglutaminases usually focus on the polymerization of protein substrates by intermolecular Nɛ(γ-glutamyl)lysine bridges, without considering the possibility that the monomeric protein units, themselves, could also become crosslinked internally. Both types of crosslinks are produced in the reaction of fibrinogen with red cell transglutaminase. We isolated the transglutaminase-modified, mostly monomeric form (92–96%) of fibrinogen with a Nɛ(γ-glutamyl)lysine content of ≈1.6 moles/mole of fibrinogen. The preparation was fully clottable by thrombin, but the rates of release of fibrinopeptides and clotting times were delayed compared with control. Hybrid Aα⋅γ type of crosslinking, the hallmark of the reaction of the transglutaminase with fibrinogen, occurred by bridging the Aα(408–421) chain segment of the protein to that of γ(392–406). Rotary shadowed electron microscope images showed many monomers to be bent, and the crosslinks seemed to bind the otherwise flexible αC domain closer to the backbone of fibrinogen.
Resumo:
Morphological specialization for a specific role has, until now, been assumed to be restricted to social invertebrates. Herein we show that complete physical dimorphism has evolved between reproductives and helpers in the eusocial naked mole-rat. Dimorphism is a consequence of the lumbar vertebrae lengthening after the onset of reproduction in females. This is the only known example of morphological castes in a vertebrate and is distinct from continuous size variation between breeders and helpers in other species of cooperatively breeding vertebrates. The evolution of castes in a mammal and insects represents a striking example of convergent evolution for enhanced fecundity in societies characterized by high reproductive skew. Similarities in the selective environment between naked mole-rats and eusocial insect species highlight the selective conditions under which queen/worker castes are predicted to evolve in animal societies.
Resumo:
Chemical modification of proteins is a common theme in their regulation. Nitrosylation of protein sulfhydryl groups has been shown to confer nitric oxide (NO)-like biological activities and to regulate protein functions. Several other nucleophilic side chains -- including those with hydroxyls, amines, and aromatic carbons -- are also potentially susceptible to nitrosative attack. Therefore, we examined the reactivity and functional consequences of nitros(yl)ation at a variety of nucleophilic centers in biological molecules. Chemical analysis and spectroscopic studies show that nitrosation reactions are sustained at sulfur, oxygen, nitrogen, and aromatic carbon centers, with thiols being the most reactive functionality. The exemplary protein, BSA, in the presence of a 1-, 20-, 100-, or 200-fold excess of nitrosating equivalents removes 0.6 +/- 0.2, 3.2 +/- 0.4, 18 +/- 4, and 38 +/- 10, respectively, moles of NO equivalents per mole of BSA from the reaction medium; spectroscopic evidence shows the proportionate formation of a polynitrosylated protein. Analogous reaction of tissue-type plasminogen activator yields comparable NO protein stoichiometries. Disruption of protein tertiary structure by reduction results in the preferential nitrosylation of up to 20 thus-exposed thiol groups. The polynitrosylated proteins exhibit antiplatelet and vasodilator activity that increases with the degree of nitrosation, but S-nitroso derivatives show the greatest NO-related bioactivity. Studies on enzymatic activity of tissue-type plasminogen activator show that polynitrosylation may lead to attenuated function. Moreover, the reactivity of tyrosine residues in proteins raises the possibility that NO could disrupt processes regulated by phosphorylation. Polynitrosylated proteins were found in reaction mixtures containing interferon-gamma/lipopolysaccharide-stimulated macrophages and in tracheal secretions of subjects treated with NO gas, thus suggesting their physiological relevance. In conclusion, multiple sites on proteins are susceptible to attack by nitrogen oxides. Thiol groups are preferentially modified, supporting the notion that S-nitrosylation can serve to regulate protein function. Nitrosation reactions sustained at additional nucleophilic centers may have (patho)physiological significance and suggest a facile route by which abundant NO bioactivity can be delivered to a biological system, with specificity dictated by protein substrate.
Resumo:
Previous investigations from our laboratory showed that the genomes of plants, like those of vertebrates, are mosaics of isochores, i.e., of very long DNA segments that are compositionally homogeneous and that can be subdivided into a small number of families characterized by different GC levels (GC is the mole fraction of guanine+cytosine). Compositional DNA fractions corresponding to different isochore families were used to investigate, by hybridization with appropriate probes, the gene distribution in vertebrate genomes. Here we report such a study on the genome of a plant, maize. The gene distribution that we found is most striking, in that almost all genes are present in isochores covering an extremely narrow (1-2%) GC range and only representing 10-20% of the genome. This gene distribution, which seems to characterize other Gramineae as well, is remarkably different from the gene distribution previously found in vertebrate genomes.
Resumo:
VIP21/caveolin is localized to both caveolae and apical transport vesicles and presumably cycles between the cell surface and the Golgi complex. We have studied the lipid interactions of this protein by reconstituting Escherichia coli-expressed VIP21/caveolin into liposomes. Surprisingly, the protein reconstituted only with cholesterol-containing lipid mixtures. We demonstrated that the protein binds at least 1 mol of cholesterol per mole of protein and that this binding promotes formation of protein oligomers. These findings suggest that VIP21/caveolin, through its cholesterol-binding properties, serves a specific function in microdomain formation during membrane trafficking.
Resumo:
Several lines of evidence indicate that immunoglobulin-bound prolactin found in human serum is not a conventional complex between an anti-prolactin antibody and prolactin but a different type of association of prolactin with the Fab portion of IgG heavy chains. The complex of prolactin with IgG was purified from serum by anti-human prolactin affinity chromatography and was shown to contain close to 1 mole of N epsilon-(gamma-glutamyl)lysine crosslinks per mole of complex, a characteristic feature in structures crosslinked by transglutaminase. Interestingly, the complex caused a proliferation of cells from a subset of patients with chronic lymphocytic leukemia, while it was inactive in a cell proliferation prolactin bioassay. By contrast, human prolactin stimulated the proliferation of cells in the bioassay but had no effect on the complex-responsive cells from the patients. Competition studies with prolactin and free Fc fragment of IgG demonstrated a necessity for engaging both the prolactin and the immunoglobulin receptors for proliferation. More importantly, competition for the growth response by free prolactin and IgG suggests both possible reasons for the slow growth of this neoplasm as well as avenues for control of the disease.