3 resultados para Pennsylvania. Department of Internal Affairs

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many blockers of Na+ and K+ channels act by blocking the pore from the intracellular side. For Shaker K+ channels, such intracellular blockers vary in their functional effect on slow (C-type) inactivation: Some blockers interfere with C-type inactivation, whereas others do not. These functional differences can be explained by supposing that there are two overlapping “subsites” for blocker binding, only one of which inhibits C-type inactivation through an allosteric effect. We find that the ability to bind to these subsites depends on specific structural characteristics of the blockers, and correlates with the effect of mutations in two distinct regions of the channel protein. These interactions are important because they affect the ability of blockers to produce use-dependent inhibition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The membrane assembly of polytopic membrane proteins is a complicated process. Using Chinese hamster P-glycoprotein (Pgp) as a model protein, we investigated this process previously and found that Pgp expresses more than one topology. One of the variations occurs at the transmembrane (TM) domain including TM3 and TM4: TM4 inserts into membranes in an Nin-Cout rather than the predicted Nout-Cin orientation, and TM3 is in cytoplasm rather than the predicted Nin-Cout orientation in the membrane. It is possible that TM4 has a strong activity to initiate the Nin-Cout membrane insertion, leaving TM3 out of the membrane. Here, we tested this hypothesis by expressing TM3 and TM4 in isolated conditions. Our results show that TM3 of Pgp does not have de novo Nin-Cout membrane insertion activity whereas TM4 initiates the Nin-Cout membrane insertion regardless of the presence of TM3. In contrast, TM3 and TM4 of another polytopic membrane protein, cystic fibrosis transmembrane conductance regulator (CFTR), have a similar level of de novo Nin-Cout membrane insertion activity and TM4 of CFTR functions only as a stop-transfer sequence in the presence of TM3. Based on these findings, we propose that 1) the membrane insertion of TM3 and TM4 of Pgp does not follow the sequential model, which predicts that TM3 initiates Nin-Cout membrane insertion whereas TM4 stops the insertion event; and 2) “leaving one TM segment out of the membrane” may be an important folding mechanism for polytopic membrane proteins, and it is regulated by the Nin-Cout membrane insertion activities of the TM segments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During macronuclear development in the ciliated protozoan Tetrahymena thermophila, extensive DNA deletions occur, eliminating thousands of internal eliminated sequences (IESs). Using an rDNA-based transformation assay we have analyzed the role during DNA deletion of DNA flanking mse2.9, an IES within the second intron of a gene encoding an as yet incompletely characterized protein. We establish that a cis-acting sequence for mse2.9 deletion acts at a distance to specify deletion boundaries. A complex sequence element necessary for efficient and accurate mse2.9 deletion is located in the region 47–81 bp from the right side of mse2.9. The ability of a variety of IES flanking sequences to rescue a processing deficient mse2.9 construct indicates that some cis-acting signal is shared among different IESs. In addition, the short intronic sequence that flanks mse2.9 is able to direct efficient and accurate processing. Despite no obvious sequence similarity between mse2.9 and other IESs, we suggest that a common mechanism is used to delete different families of IESs in Tetrahymena.