2 resultados para Penguin Rookery

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Little is known about the physiological mechanisms subserving the experience of air hunger and the affective control of breathing in humans. Acute hunger for air after inhalation of CO2 was studied in nine healthy volunteers with positron emission tomography. Subjective breathlessness was manipulated while end-tidal CO2- was held constant. Subjects experienced a significantly greater sense of air hunger breathing through a face mask than through a mouthpiece. The statistical contrast between the two conditions delineated a distributed network of primarily limbic/paralimbic brain regions, including multiple foci in dorsal anterior and middle cingulate gyrus, insula/claustrum, amygdala/periamygdala, lingual and middle temporal gyrus, hypothalamus, pulvinar, and midbrain. This pattern of activations was confirmed by a correlational analysis with breathlessness ratings. The commonality of regions of mesencephalon, diencephalon and limbic/paralimbic areas involved in primal emotions engendered by the basic vegetative systems including hunger for air, thirst, hunger, pain, micturition, and sleep, is discussed with particular reference to the cingulate gyrus. A theory that the phylogenetic origin of consciousness came from primal emotions engendered by immediate threat to the existence of the organism is discussed along with an alternative hypothesis by Edelman that primary awareness emerged with processes of ongoing perceptual categorization giving rise to a scene [Edelman, G. M. (1992) Bright Air, Brilliant Fire (Penguin, London)].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have sequenced the region of DNA adjacent to and including the flightless (fli) gene of Drosophila melanogaster and molecularly characterized four transcription units within it, which we have named tweety (twe), flightless (fli), dodo (dod), and penguin (pen). We have performed deletion and transgenic analysis to determine the consequences of the quadruple gene removal. Only the flightless gene is vital to the organism; the simultaneous absence of the other three allows the overriding majority of individuals to develop to adulthood and to fly normally. These gene deletion results are evaluated in the context of the redundancy and degeneracy inherent in many genetic networks. Our cDNA analyses and data-base searches reveal that the predicted dodo protein has homologs in other eukaryotes and that it is made up of two different domains. The first, designated WW, is involved in protein-protein interactions and is found in functionally diverse proteins including human dystrophin. The second is involved in accelerating protein folding and unfolding and is found in Escherichia coli in a new family of peptidylprolyl cis-trans isomerases (PPIases; EC 5.2.1.8). In eukaryotes, PPIases occur in the nucleus and the cytoplasm and can form stable associations with transcription factors, receptors, and kinases. Given this particular combination of domains, the dodo protein may well participate in a multisubunit complex involved in the folding and activation of signaling molecules. When we expressed the dodo gene product in Saccharomyces cerevisiae, it rescued the lethal phenotype of the ESS1 cell division gene.